
PRISM-games: A Model Checker
for Stochastic Multi-Player Games

Taolue Chen1, Vojtěch Forejt1, Marta Kwiatkowska1,
David Parker2, and Aistis Simaitis1

1 Department of Computer Science, University of Oxford, UK
2 School of Computer Science, University of Birmingham, UK

Abstract. We present PRISM-games, a model checker for stochastic
multi-player games, which supports modelling, automated verification
and strategy synthesis for probabilistic systems with competitive or co-
operative behaviour. Models are described in a probabilistic extension
of the Reactive Modules language and properties are expressed using
rPATL, which extends the well-known logic ATL with operators to reason
about probabilities, various reward-based measures, quantitative prop-
erties and precise bounds. The tool is based on the probabilistic model
checker PRISM, benefiting from its existing user interface and simulator,
whilst adding novel model checking algorithms for stochastic games, as
well as functionality to synthesise optimal player strategies, explore or
export them, and verify other properties under the specified strategy.

1 Introduction

Stochastic games are a natural model for systems that exhibit probabilistic be-
haviour and which contain components that may either compete or cooperate
in order to achieve a certain goal. The model has a rich underlying theory and
applications in areas as diverse as economics and biology. Stochastic games also
have many applications in computer science. Game-theoretic models of compet-
itive or collaborative behaviour can be used to model, for example, distributed
systems, security protocols or sensor networks; furthermore, many such systems
are inherently probabilistic, e.g. due to failures or randomisation.

For simpler model subclasses, various verification tools are available and
widely used. For probabilistic models such as Markov chains or Markov decision
processes and their variants, probabilistic model checking tools like PRISM [9]
and MRMC [8] provide verification of quantitative properties in probabilistic
temporal logics. For (non-stochastic) games, model checkers such as MCMAS [10]
and MOCHA [1] verify properties in ATL or epistemic logics. GAVS+ [7] is
a general-purpose algorithmic game solver which includes support for simple
stochastic games. Game-based verification tools also have applications to schedul-
ing and synthesis problems, for example using timed games [2], qualitative
stochastic games [3] or mean-payoff games [4].

In this paper, we present PRISM-games, which is, to the best of our knowl-
edge, the first tool to provide modelling and quantitative verification for stochas-
tic multi-player games (SMGs). The games are specified using an extension of

2 Chen, Forejt, Kwiatkowska, Parker, Simaitis

the existing PRISM modelling language, which is a guarded-command based lan-
guage inspired by the Reactive Modules formalism. Properties are specified in the
temporal logic rPATL [5], which combines features of the multi-agent logic ATL,
the probabilistic logic PCTL, as well as operators to reason about several differ-
ent notions of reward/cost measures, numerical properties and precise probabil-
ity values [6]. Currently, PRISM-games supports turn-based, perfect-information
SMGs; future work will investigate efficient techniques for more general prob-
lem classes such as concurrent games and partial information. Turn-based games
have, though, already proved to be sufficient to model, analyse and detect po-
tential weaknesses systems in algorithms for energy management and collective
decision making for autonomous systems [5].

PRISM-games builds upon the code-base of the existing PRISM model checker,
extending existing features to provide a modelling language for stochastic multi-
player games and a graphical user interface with model editor, discrete-event
simulator and graph-plotting functionality. The core functionality of the new
tool comprises novel methods for verifying quantitative properties of stochastic
games [5,6]; and support for synthesising optimal player strategies, exploring or
exporting them, and verifying other properties under the specified strategy.

2 Modelling Stochastic Multi-Player Games

A (turn-based) stochastic multi-player game (SMG) comprises a finite set of
players and a finite set of states. In each state, exactly one player chooses (pos-
sibly randomly) from a set of available probabilistic transitions to determine the
next state. To reason about SMGs, we use strategies, which determine the choices
of transitions made by each player, based on the execution of the game so far.

In PRISM-games, SMGs are described in a modelling language similar to the
Reactive Modules formalism. A model is composed of modules, whose state is
determined by a set of variables and whose behaviour is specified by a set of
guarded commands, containing an (optional) action label, a guard and a proba-
bilistic update for the module’s variables:

[action] guard -> prob1 : update1 + ... + probn : updaten;

When a module has a command whose guard is satisfied in the current state, it
can update its variables probabilistically, accordingly to the update. For action-
labelled commands, multiple modules execute updates synchronously, if all their
guards are satisfied. Each probabilistic transition in the model is thus associated
with either an action label or a single module. A model also defines players, each
of which is assigned a disjoint subset of the model’s synchronising action labels
and modules. This assigns each probabilistic transition to one player. Currently,
to ensure a turn-based SMG, all possible probabilistic transitions in a state must
belong to the same player; the tool detects and disallows concurrent actions.

An excerpt from a PRISM-games model of futures market investors is shown
in Fig. 1. There are 3 players: 2 investors and the market. At the start of each
month, investors decide whether to invest or not; the market can decide to bar

PRISM-games: A Model Checker for Stochastic Multi-Player Games 3

smg

// Player definitions
player investor1

[invest1], [noinvest1], [cashin1]
endplayer
player investor2

[invest2], [noinvest2], [cashin2]
endplayer
player market

[nobar], [bar1], [bar2], sched, [month], [done]
endplayer

// Investor 1
module investor1

// State: 0 = no reservation
// 1 = made reservation
// 2 = finished
i1 : [0..2];
// Decide whether invest or not
[noinvest1] i1=0 | i1=1 & b1=1 → (i1 ′=0);
[invest1] i1=0 | i1=1 & b1=1 → (i1 ′=1);
// Cash in shares (if not barred)
[cashin1] i1=1 & b1=0 → (i1 ′=2);
// Finished
[done] i1=2 | term=1→ true;

endmodule

// Investor 2
module investor2 = investor1 [. . .] endmodule

// Market
module market

// State: 0 = !barred, 1 = barred
b1 : [0..1] init 1;
b2 : [0..1] init 1;
// Share value
v : [0..vmax] init vinit;
// Bar one or none of the investors
[nobar] true → (b1 ′=0) & (b2 ′=0);
[bar1] b1=0 → (b1 ′=1) & (b2 ′=0);
[bar2] b2=0 → (b2 ′=1) & (b1 ′=0);
// Share price movement
[month] true → p/10 : (v ′=up)

+ (1− p/10) : (v ′=down);
endmodule

// Scheduling module
module sched

// Turn-based scheduling of players
endmodule

// Reward: Shares collection value
// for investor1, and both investors
rewards “profit1”

[cashin1] i1=1 : v ;
endrewards
rewards “profit12”

[cashin1] i1=1 : v ;
[cashin2] i2=1 : v ;

endrewards

Fig. 1: Excerpt from a three-player game modelling futures market investors.

one of the investors from investing and also picks the order in which the investors
take decisions. Share price fluctuations are modelled as a random process. The
full model, along with several larger examples, is available from [11].

3 Property Specification

PRISM-games’ property specification language is based on rPATL [5]. rPATL is
a CTL-style branching-time temporal logic used to express properties of SMGs,
which combines the coalition operator 〈〈C〉〉 of ATL, the probabilistic operator
P./q from PCTL, and an operator Rr./x for reasoning about several types of
expected reward/cost measures. The syntax of rPATL is given by the grammar:

φ ::= > | a | ¬φ | φ ∧ φ | 〈〈C〉〉P./q[ψ] | 〈〈C〉〉Rr./x[F?φ]

ψ ::= Xφ | φUφ | φU≤k φ | Fφ | F≤kφ | Gφ | G≤kφ

where a is an atomic proposition used to label SMG states, C is a coalition (a
set of players), ./∈ {<,≤,≥, >}, q ∈ Q∩ [0, 1], x ∈ Q≥0, r is a reward structure
mapping states to non-negative rationals, ? ∈ {0,∞, c} and k ∈ N.

An example rPATL formula is 〈〈{1, 2}〉〉P≥0.75[F≤5goal], which means “play-
ers 1 and 2 have a (combined) strategy to ensure that the probability of reaching

4 Chen, Forejt, Kwiatkowska, Parker, Simaitis

a ‘goal ’ state within 5 steps is at least 0.75, regardless of the strategies of other
players in the game”. The 〈〈C〉〉Rr./x[F?φ] operator is used in a similar fashion,
but is annotated with a reward structure r and a type ? ∈ {0,∞, c}. It states
that coalition C has a strategy to ensure that expected amount of reward r cu-
mulated until a φ-state is reached satisfies ./ x. The type ? allows us to treat
the case where φ is not reached differently, assigning zero reward (?=0), infinite
reward (?=∞) or allowing reward to accumulate indefinitely (?=c).

We support several extensions of rPATL, including ‘quantitative’ (numer-
ical) operators, e.g., 〈〈C〉〉Pmax=?[ψ], which gives the maximum probability of
ψ that coalition C can guarantee, instead of a true/false value. PRISM-games
also supports precise value operators 〈〈C〉〉P=q[ψ] and 〈〈C〉〉Rr=x[Fcφ] for stopping
games (i.e., stochastic games where terminal states are reached with probability
1 under any pair of strategies), using the model checking algorithms of [6].

Examples. Some sample properties for the futures market investor model from
the previous section (see Fig. 1) are provided below.

– 〈〈{investor1,investor2}〉〉Rprofit12
≥10 [Fc(done1∧done2)] – “the two investors have

a joint strategy guaranteeing them an expected profit of at least 10”;

– 〈〈{investor1,market}〉〉Rprofit1
max=?[Fcdone1] – “what is the maximum expected

profit that investor 1 can achieve with the help of the market?”;

– 〈〈{investor1,investor2}〉〉Rprofit12
=5 [Fcdone] – “both investors can collaborate to

achieve an expected profit of precisely 5”;

– 〈〈{investor1}〉〉Pmax=?[F (done1∧v > 5)] – “what is the maximum probability
with which investor 1 can guarantee a share value greater than 5?”

4 Synthesis and Analysis of Strategies

Reasoning about strategies is an essential aspect of modelling and verifying
games. rPATL queries check for the existence of a strategy that satisfies a given
probability/reward bound or which optimises some objective. When PRISM-
games model checks such properties, it also supports strategy synthesis, allowing
the user to obtain a corresponding satisfying/optimal strategy.

An SMG strategy resolves the choices in each state, using a (possibly infinite)
set of memory elements, each representing a possible “state” of the strategy. The
memory element is updated (possibly stochastically) at each transition, and
the action picked by the player is determined by the current memory element
and the current state. A strategy is memoryless if it has only one memory
element, and finite-memory if there are finitely many. It is deterministic if the
functions that update memory elements and pick actions are not probabilistic,
and stochastic-update otherwise. Currently, PRISM-games supports three types
of strategies: memoryless deterministic, finite-memory deterministic and finite-
memory stochastic-update.

Strategies can be analysed manually in the simulator view or exported to
files (see Fig. 2 for screenshots). PRISM-games also supports ‘implementation’

PRISM-games: A Model Checker for Stochastic Multi-Player Games 5

Fig. 2: PRISM-games screenshots: simulation of a synthesised strategy (bottom)
and verification of a property under the strategy (top).

of strategies – the product of a strategy and the original game can be built,
resulting in a new model on which other properties can be verified. For exam-
ple, in a game with 3 players we can generate a strategy for player 1 specified
by 〈〈1〉〉P≥0.5[F goal1]. Implementing this strategy would then result in a two-
player game on which further properties may be verified, e.g., in rPATL formula
〈〈2, 3〉〉P≥0.99[F goal2], player 1 now does not minimise the probability of reaching
a goal2 state; instead its strategy is fixed to one which achieves the first rPATL
formula. Strategy import functionality is also supported.

5 Algorithms and Further Details

Underlying algorithms. The core parts of the model checking algorithm for
rPATL are based on reductions to two-player stochastic games, by construct-
ing a coalition game where player 1 plays represents the coalition C from the
rPATL formula being verified and player 2 is all other players. The basic tech-
niques for solving games formulate systems of equations over +, ·,max,min, and
then perform value iteration to compute their least or greatest solutions. This
works directly for 〈〈C〉〉P./q[ψ] and 〈〈C〉〉Rr./x[F?φ] where ? ∈ {c,∞}. For ? = 0,
the optimal strategy may depend on the reward accumulated so far and so is
not memoryless. Here, we compute a bound after which the optimal strategy
picks actions that maximise the probability of reaching φ-states, and reduce
the problem to previous cases; see [5] for details. For the precise value operators
〈〈C〉〉P=q[ψ] and 〈〈C〉〉Rr=x[Fcφ], we need to compute the sup inf and inf sup values

6 Chen, Forejt, Kwiatkowska, Parker, Simaitis

Case study
SMG statistics Model checking

Players States Transitions Property type Constr. Check

mdsm [N]
5 5 743,904 2,145,120 〈〈C〉〉Rr

max=?[F0φ]
14.5s 61.9s

7 7 6,241,312 19,678,246 210.7s 1,054.8s

cdmsn [N]
3 3 1,240 1,240 〈〈C〉〉P./q[F≤k φ]

0.2s 0.2s
5 5 100,032 843,775 3.2s 6.4s

investor [vmax]
10 2 10,868 34,264 〈〈C〉〉Rr

min=?[Fcφ]
1.4s 0.7s

200 2 2,931,643 9,688,354 45.9s 820.8s

team-form [N]
3 3 17,041 20,904 〈〈C〉〉Pmax=?[Fφ]

0.3s 0.5s
5 5 2,366,305 2,893,536 36.9s 12.9s

Table 1: Performance statistics for a representative set of models [5,11].

for the property (using rPATL model checking algorithms). We then construct
a finite-memory stochastic-update strategy based on the results of [6].

Implementation and availability. The model checking implementation is cur-
rently built upon PRISM’s “explicit” engine, which uses Java-based explicit-state
data structures (sparse matrices, bit-sets, etc.). Illustrative experimental results
are shown in Table 1, for games of the order 106-107 states (run on a 2.8GHz
PC with 32GB of RAM). A symbolic (BDD-based) implementation is under
development to offer improved scalability on models exhibiting regularity.

PRISM-games is released as open source software, currently licensed under
the GPL. The tool, with documentation and examples, is available from [11].

Acknowledgments. The authors are part supported by ERC Advanced Grant
VERIWARE, the Institute for the Future of Computing at the Oxford Martin
School, EPSRC grant EP/F001096/1 and a Royal Society Newton Fellowship.

References

1. Alur, R., Henzinger, T., Mang, F., Qadeer, S., Rajamani, S., Tasiran, S.: MOCHA:
Modularity in model checking. In: Proc. CAV’98. LNCS, vol. 1427 (1998)

2. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K., Lime, D.:
UPPAAL-Tiga: Time for playing games! In: Proc. CAV’07. LNCS, vol. 4590 (2007)

3. Chatterjee, K., Henzinger, T., Jobstmann, B., Radhakrishna, A.: Gist: A solver for
probabilistic games. In: Proc. CAV’10. pp. 665–669. LNCS, Springer (2010)

4. Chatterjee, K., Henzinger, T., Jobstmann, B., Singh, R.: QUASY: Quantitative
synthesis tool. In: Proc. TACAS’11. LNCS, vol. 6605. Springer (2011)

5. Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: Automatic verifi-
cation of competitive stochastic systems. In: Proc. TACAS’12. pp. 315–330 (2012)

6. Chen, T., Forejt, V., Kwiatkowska, M., Simaitis, A., Trivedi, A., Ummels, M.:
Playing stochastic games precisely. In: Proc. CONCUR’12. pp. 348–363 (2012)

7. Cheng, C., Knoll, A., Luttenberger, M., Buckl, C.: GAVS+: An open platform for
the research of algorithmic game solving. Proc. TACAS’11 pp. 258–261 (2011)

8. Katoen, J.P., Hahn, E.M., Hermanns, H., Jansen, D., Zapreev, I.: The ins and outs
of the probabilistic model checker MRMC. In: Proc. QEST’09. IEEE (2009)

9. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: Proc. CAV’11. LNCS, vol. 6806, pp. 585–591. Springer (2011)

10. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: A model checker for the verification
of multi-agent systems. In: Proc. CAV’09. LNCS, vol. 5643. Springer (2009)

11. PRISM-games website, http://www.prismmodelchecker.org/games/

http://www.prismmodelchecker.org/games/

	PRISM-games: A Model Checker for Stochastic Multi-Player Games

