
Maximal Confluent Processes

Xu Wang

International Institute of Software Technology, United Nations University
PO Box 3058, Macau
wx@iist.unu.edu

Abstract. In process semantics of Petri Net, a non-sequential process is
a concurrent run of the system represented in a partial order-like struc-
ture. For transition systems it is possible to define a similar notion of
concurrent run by utilising the idea of confluence. Basically a confluent
process is an acyclic confluent transition system that is a partial unfold-
ing of the original system. Given a non-confluent transition system G,
how to find maximal confluent processes of G is a theoretical problem
having many practical applications.
In this paper we propose an unfolding procedure for extracting maximal
confluent processes from transition systems. The key technique we utilise
in the procedure is the construction of granular configuration structures
(i.e. a form of event structures) based on diamond-structure information
inside transition systems.

1 Introduction

Confluence is an important notion of transition systems. Previously there has
been extensive work devoted to its study, e.g. [10, 7, 6, 9]. In [7] confluence is stud-
ied from the perspective of non-interleaving models, where it was concluded that
in order to characterise the class of confluent transition systems the underlying
event-based models needs to support the notion of or-causality [16, 19].

In this paper we are going to study the idea of maximal confluent sub-systems
of a non-confluent transition system, also from a non-interleaving perspective.
It can be regarded as an extension of the notion of non-sequential pocesses in
Petri Net [5, 2, 3] onto transition systems. We call it maximal confluent process
(MCP). Intuitively a maximal confluent process is a concurrent run of the system
that is maximal both in length and in degree of concurrency. A non-confluent
system has multiple such runs. Non-maximal concurrent runs can be deduced
from maximal ones, e.g. by restricting concurrency (i.e. strengthening causality
relation).

Like non-sequential processes, which can be bundled together to form branch-
ing processes of Petri Net, the set of maximal confluent processes (extracted from
a given transition system) can coalesce into a MCP branching processes of the
original system. Such branching processes record, in addition to causality infor-
mation, also the ‘choice points’ of the system at which different runs split from
each other. In a non-interleaving setting the ‘choice points’ are formalised as
(immediate) conflicts on events. The arity of the conflicts can be non-binary,

thus giving rise to the so called finite conflicts. For instance, in state s0 of Fig-
ure 1 actions a, b and c form a ternary conflict, which induces the three maximal
concurrent runs of the system (i.e. the three subgraphs on the right).

In this paper we propose an unfolding procedure to construct granular con-
figuration structures from transition systems. The procedure preserves the max-
imality of confluence in such a way that each generated configuration corre-
sponds to a prefix of some maximal concurrent run. Configuration structures
are an event structure represented in a global-state based fashion [15, 14]. They
support or-causlity as well as finite conflicts.

2 Motivating Examples

We first look at two examples in order to build up some intuitions for maximal
confluent processes.

a

b

c

 s1

s2

s3

s0

Full Graph

s4

s5
s7

s6
s8

a

aa

b

b

b

c

c c

a

b

Subgraph 1

a

b

bc c

a

c

Subgraph 2

a

b

bc c

b

c

Subgraph 3

a

b
c

Fig. 1. A running example

The first example is the left-most graph in Figure 1, which is an LTS in the
shape of a broken cube (i.e. replacing transition s4

s−→ s8 by s4
s−→ s7 will give

rise to a true cube-shaped LTS). The three subgraphs on its right are confluent
subgraphs of the broken cube. Moreover, they are maximal such subgraphs;
adding any state or transition to them will invalidate their confluence. They are
exactly the maximal confluent processes we are looking for.

a

b

s2

s3

s1

b

a

a

b

b

a

LTS MCP 1 MCP 2 MCP 3

a

a b

b

Fig. 2. The second example

For the general cases, however, maximal confluent processes do not coincide
with maximal confluent subgraphs. Let us look at the left-most LTS in Figure 2.
The maximal confluent subgraphs of such system are the four maximal simple

paths in the graph, i.e. s1
a−→ s2

a−→ s3, s1
a−→ s2

b−→ s3, s1
b−→ s2

a−→ s3, and

2

s1
b−→ s2

b−→ s3. But its maximal confluent processes have three members, MCP

1-3 in Figure 2. Two subgraphs s1
a−→ s2

b−→ s3 and s1
b−→ s2

a−→ s3 are combined
into one process, MCP 1. MCP 1 is not a subgraph because state s2 of the
original LTS is split into two states.

The idea of maximal confluent processes has interesting applications. The
extraction of maximal confluent processes from a given transition system can be
regarded as a deep form of commutativity analysis on the system, which is fully
dynamic (i.e. state-dependent) and global (i.e. checking infinite number of steps
into future). For instance, they can be used in partial order reduction [11, 4, 13]
to define a canonical notion of optimal reduction, weak knot [8]. The challenge,
however, lies in how to find a procedure that uses only local diamond-structure
information inside transition systems to extract maximal confluent processes.

Now let us develop a formal framework to study the problem.

3 Maximal Confluent Processes

Definition 1. A transition system (TS) is a 4-tuple (S,Σ,∆, ŝ) where

– S is a set of states,
– Σ is a finite set of actions (ranged over by a, b, etc.),
– ∆ is a partial function from S ×Σ to S (i.e. the transition function)1, and
– ŝ ∈ S is the initial state.

Fix a TS, G = (S,Σ,∆, ŝ), and define:

– a transition t = s
a−→ s′ means (s, a, s′) ∈ ∆;

– a consecutive sequence of transitions L = s0
a1−→ s1

a2−→ s2 . . . sn−1
an−−→ sn

means si−1
ai−→ si for all 1 ≤ i ≤ n. L is called an execution (i.e. sequential

run) of G from s0 to sn producing trace a1 · · · an. When s0 = ŝ we further
call it a system execution of G; and we use L(G) to denote the set of system
executions of G.

– s
a1···an−−−−→ s′ means there exists an execution of G from s0 to sn producing

trace a1 · · · an;
– s

a−→ means ∃s′ : s a−→ s′, while s ̸ a−→ means ¬s a−→;
– eb(s) denotes the set of actions enabled at s, i.e. {a | s a−→};
– Reach(s) denotes the set of states reachable from s;
– given any s ∈ Reach(ŝ), G/s = (S,Σ,∆, s) denotes the new transition

system generated after the evolution to s;
– and if G is acyclic, we further define:

• s ⊑ s′ means s′ ∈ Reach(s), i.e. s′ is a subsequent state of s (or s is an
earlier state of s′);

• given any X ⊆ S, min(X) denotes the set of ⊑-minimal states inside X,
while X↓ denotes the ⊑-downward closure of X;

1 Note that our transition systems are actually deterministic transition systems in the
classical sense. It gives us simplicity in theory presentation while at the same time
sacrificing few technical insights.

3

• s ||⊑ s′ means s and s′ are incomparable w.r.t. ⊑;

• and given any s ∈ Reach(ŝ), s/G denotes the restriction of G to {s}↓,
i.e. s/G = ({s}↓, Σ, {(s0, a, s1) | (s0, a, s1) ∈ ∆ ∧ s0, s1 ∈ {s}↓}, ŝ).

When there is any danger of confusion, we use →G to say the transitions come
from a TS named G. Similarly we use SG for the set of states and ŝG for the
initial state of G.

TSes can be related to each other by partial unfolding relation:

– We say G is a partial unfolding of G′ if there exists a function f from SG to
SG′ such that f(ŝG) = ŝG′ and s

a−→G s′ =⇒ f(s)
a−→G′ f(s′).

As its name suggests partial unfolding unwinds just part of a transition sys-
tem. When f is injective, partial unfolding is reduced to subgraph relation. In
the rest of the paper, whenever the homomorphism f of any subgraph relation
is left unspecified, we assume f is the identity function.

Of cause, we can also fully unwind TSes, giving rise to the unfolding relation:

– We say G is an unfolding of G′ if G is a partial unfolding of G′ and, for all
system execution ŝG′

a1−→G′ s′1
a2−→G′ s′2 . . . s

′
n−1

an−−→G′ s′n of G′, there is a

system execution ŝG
a1−→G s1

a2−→G s2 . . . sn−1
an−−→G sn of G s.t. s′i = f(si)

for all 1 ≤ i ≤ n.

Of all TSes, a particular interesting subclass of TSes is confluent TSes.

– G is confluent if, for all s ∈ SG and a, b ∈ ebG(s) (with a ̸= b), a and b form

a local diamond at s, i.e. ∃s3 ∈ SG : s
ab−→G s3 ∧ s

ba−→G s3.

In the rest of the paper we use a3s b to denote a diamond rooted at s and
built from a and b actions. The notation can be extended to multi-dimension
diamonds. We use3s A to denote a n-dimension (where n = |A|) diamond rooted
at s and built from members of A, i.e. given any B ⊆ A, there exists a unique
s′ ∈ S such that s

a1···am−−−−−→ s′ for all permutation a1 · · · am of B.
It is interesting to note that all local diamonds inside a partial unfolding

are inherited from those of the original TS. They are the unwinded versions of
the original diamonds (c.f. MCP 1 in Figure 2). Furthermore, since a partial
unfolding can visit a state of the original TS more than once (esp. when the
original TS is cyclic), we can choose to unwind a different diamond on subsequent
visits to the state.

Now we are ready to define the notion of concurrent runs of TSes:

– We say an acyclic confluent TS F is a confluent process of G if F is a partial
unfolding of G.

A confluent process F can be finite or infinite. For a finite confluent process
F , it has a unique maximal state, denoted šF .

4

– We say a confluent process F of G is a maximal confluent process (MCPs)
if F is maximal w.r.t. partial unfolding relation, i.e. F is a partial unfolding
of another confluent process F ′ implies F ′ and F are isomorphic2.

When restricted to confluent processes, partial unfolding relation is reduced
to subgraph relation (c.f. the lemma below). Thus MCPs are ‘maximal confluent
subgraphs’. In addition, there is a unique minimal confluent subgraph of G,
denoted Ĝ. Ĝ is the trivial TS with a single state and empty transition function,
i.e. Ĝ = ({ŝG}, Σ, {}, ŝG).

Lemma 1. Given two confluent processes F and F ′ of G, F is a partial unfold-
ing of F ′ implies the homomorphism f between F and F ′ is injective.

In the rest of the paper we will use ≼ to denote subgraph relation on confluent
processes. Relation ≼ allows a confluent process to be reduced in two different
dimensions: the degree of concurrency and the length of causality chains. Thus
MCPs represent the longest possible runs of the system in a maximally con-
current fashion. In a transition system with cycles that implies MCPs are often
infinite graphs: finite MCPs are those derived from terminating runs (i.e. ending
in a state where there is no outgoing transitions).

More refined relations on confluent processes that reduces only one of the
dimensions can also be defined:

– Given two confluent processes F and F ′, we say F is a (concurrency) tight-
ening of F ′ (or F ′ is a relaxation of F), denoted F ≼r F ′, if F is a subgraph
of F ′ and, for all s ∈ SF and a ∈ ebF ′(s), there exists a subsequent state
s′ ∈ SF of s s.t. a ∈ ebF (s

′).
– Given two confluent processes F and F ′ of G, we say F is a prefix of F ′ (or

F ′ is an elongation of F ′), denoted F ≼e F ′, if F is a subgraph of F ′ and
there exists a function p from SF to 2Σ (i.e. the pending action function)

s.t. s ∈ SF =⇒ p(s) = ebF ′(s) \ ebF (s) and s
a−→F s′ =⇒ p(s) ⊆ p(s′).

Subgraph relation is decomposable into the two refined relations.

Lemma 2. F ≼ F ′′ 1) iff there exists some F ′ s.t. F ≼r F ′ ≼e F ′′ and 2) iff
there exists some F ′ s.t. F ≼e F

′ ≼r F ′′.

The intuition behind the refined relations can better be understood using the
notion of ‘events’.

– Given a confluent process F , we say a state s ∈ SF is the origin of an action

occurrence, say a, if a ∈ ebF (s) and s0
b−→F s =⇒ a = b ∨ a /∈ ebF (s0).

– An occurrence of a with origin s gives rise to a granular event, denoted
T , which is the set of a-transition reachable from s by firing only non-a
transitions in F . Conversely, given T we use lbF (T) and oF (T) to denote its
label a and origin s resp.

2 In the rest of the paper we will freely use F to denote an acyclic confluent graph or
to denote its isomorphism class.

5

– Given two confluent processes F ≼ F ′ and two granular events T in F and
T ′ in F ′, we say T and T ′ are the same event if T ⊆ T ′ and oF (T) = oF ′(T ′);
and we say T is a postponed occurrence of T ′ if T ⊆ T ′ and oF (T) ̸= oF ′(T ′).

– We say two granular events T and T ′ of F are or-causally coupled if T ∩T ′ ̸=
{}.

The or-causal coupling relation is reflexive and symmetric. Its transitive clo-
sure, which is an equivalence relation, can be used to partition the set of granular
events in F . That is, each equivalence class E gives rise an event T =

∪
T0∈E T0.

Note that an event does not have a unique origin; thus we replace oF (T) by
OF (T) to denote its set of origins.

– Given two confluent processes F ≼ F ′ and two events T in F and T ′ in F ′, we
say T and T ′ are the same event if T ⊆ T ′ and OF (T) = OF ′(T ′)∩SF , and
we say T is a delayed occurrence of T ′ if T ⊆ T ′ and OF (T) ̸= OF ′(T ′)∩SF .

Based on the notions of events we can see that tightening on F ′ delays (but
not removes) events in F ′ while prefixing on F ′ removes (but not delays) events
inside F ′.

One fact noteworthy is that, as we elongate a confluent process, events can
become ‘enlarged’ through the addition of new granular events (even though
they remain the same events). However, this addition has an upper-limit as the
‘size’ of an event will eventually stablise.

Lemma 3. Given a strictly increasing (w.r.t. ≼E) infinite sequence of confluent
processes F0 F1 ... Fi ..., T is an event in Fi implies there exists some j ≥ i and
event T ′ in Fj s.t. T and T ′ are the same event and T ′ is stablised at j, i.e. for
any n ≥ j, T ′′ of Fn is the same event as T ′ implies OFj (T

′) = OFn(T
′′).

Some further facts about the refined relations are:

Lemma 4. Given two finite confluent processes F ≼ F ′, we have 1) F ≼r F ′

iff šF = šF ′ , and 2) F ≼e F
′ iff F = šF /F

′.

In another word the set of prefixes of F ′ corresponds 1-1 to the set of states of
F ′.

– A confluent process F is said to be a maximally relaxed process (i.e. MRP)
if F is maximal w.r.t. ≼r.

– A confluent process F is said to be an MCP prefix if there exists an MCP
F ′ s.t. F is a prefix of F ′. MCP prefixes are the initial parts of complete
maximally-concurrent runs.

Naturally one can imagine that MCPs are generated step by step by unfolding
local diamonds in the states it visits; MCPs usually prefers to unfold larger
diamonds in each step. However, the maximality of MCPs, unlike diamonds,
is a global property. Sometimes choosing a strictly smaller diamond to unfold
at an early state might lead to a larger diamond in subsequent states. This
phenonmenon is similar to the phenonmenon of confusion in Petri Net.

6

– Given a state s ∈ SG, we say A ⊆ Σ is an MCP step (MPS) at s if there
exists a MCP F of G s.t. ∃sF ∈ SF : f(sF) = s ∧ ebF (sF) = A.

Given a state s, the set of its MPSes are not necessarily downward closed
or mutually imcomparable (w.r.t subsethood). As an example, imagine an event
structure with four events e1, e2, e3 and e4 labelled by action a, b, c and d resp.
e3 and e4 causally depend on e2 while e3 is in conflict with e1. In the transition
system generated by the event structure, a and b form a maximal diamond at
the initial state. However, taking the a3 b diamond will destroy the future c3 d
diamond which is reachable by taking the b action only. Thus {a, b} and {b} are
both MPSes at the initial state whilst {a} is not.

Similarly we can see that not all MCP prefixes are MRPs, even though all
MRPs are MCP prefixes:

Lemma 5. A confluent process F is an MRP implies F is an MCP prefix.

Maximal confluence is a global property which is generally hard to establish.
However, once established, the property is preserved by system evolutions:

Lemma 6. 1) F is an MCP of G implies F/sF is an MCP of G/f(sF) for all

ŝF
a−→F sF ; 2) ŝG

a−→G sG and F ′ is an MCP of G/sG implies there exists an (not

necessarily unique) MCP F of G s.t. ŝF
a−→F sF , sG = f(sF) and F/sF = F ′.

Now we can develop the notion of maximal back-propagation that will form
the basis of our unfolding procedure in the next section.

– If F is a confluent process of G/s, then we say there is a concurrent run F

from s, denoted s
F
=⇒G. If F is finite and f(šF) = s′ ∈ SG, we further say

that there is a concurrent run F from s to s′, denoted s
F
=⇒G s′.

– We say an action a ∈ Σ is fired in a concurrent run s
F
=⇒G if an a-labelled

transition is reachable in F . We say an action a ∈ Σ is blocked in a concur-

rent run s
F
=⇒G if there exists a path ŝF

a1···an−1−−−−−−→F sF
an−−→F s′F in F s.t.

a1, · · · , an ∈ Σ \ {a} and a3f(sF) an does not hold in G; otherwise we say a

is unblocked in s
F
=⇒G.

– Given a confluent process F of G, we say an action a ∈ Σ \ ebF (sF) is
postponed at sF (or, more accurately, the potential granular event with label
a and origin sF has postponed occurrence in F) if a is unblocked in F/sF
and there exists a granular event T ′ in F s.t. lb(T ′) = a and o(T ′) A sF .

– Furthermore, we say a ∈ Σ \ ebF (sF) is p-pending (partially pending) at
sF ∈ SF if a is unblocked but fired in F/sF (a) and there is no granular
event T ′ in F s.t. lb(T ′) = a and o(T ′) A sF , and we say a ∈ Σ \ ebF (sF) is
pending at sF ∈ SF if a is neither fired nor blocked in F/sF (a).

For instance, given G (the leftmost graph) and its three confluent processes
in the figure below, we can see c is pending at s1, p-pending at s2 and postponed
at s1′ in the three confluent processes resp.

7

a

b

b

b

c

c

c

a

a

s1 s2 s1’

Fig. 3. Pending, p-pending and postponed

– A confluent process F is called primary confluent process (PCP) if no action
is postponed at any state in F .

– Given a finite confluent process F and an action a ∈ ebG(f(šF)), we define
the pending back-propagation of a over F to be bppn(a, F) = {sF ∈ SF | a is
pending at sF }, and the maximal pending back-propagation of a over F to
be mbppn(a, F) = minF (bppn(a, F)).

– Similarly, given an action a ∈ Σ which is p-pending at some state of F , we
define the p-pending back-propagation of a over F to be bppp(a, F) = {sF ∈
SF | a is p-pending at sF }, and the maximal p-pending back-propagation of
a over F to be mbppp(a, F) = minF (bppp(a, F)).

Lemma 7. A confluent process F is an MRP iff there is no postponed or p-
pending action at any sF ∈ SF .

Lemma 8. Given an action a ∈ Σ postponed or p-pending at a state sF of
F , there exists a unique minimal relaxation F ′ of F , denoted F ′ = F ↑asF , s.t.
a ∈ ebF ′(sF).

Lemma 9. Given an action a ∈ ebG(f(šF)) and a state sF ∈ bppn(a, F),

there exists a unique minimal elongation F ′ of F , denoted F
a sF F ′, s.t.

a ∈ ebF ′(sF).

Theorem 1. Given a finite primary confluent process F , if sF ∈ mbppp(a, F)∧
F ′ = F ↑asF or sF ∈ mbppn(a, F) ∧ F

a sF F ′, then F ′ is a primary confluent
process.

4 Coalescing confluent processes

A confluent process records one possible history of system evolution. To see other
possible evolutions and pinpoint where different evolutions come to deviate and
split from each other, we need to coalesce a set of confluent processes into a
branching structure. Coalescing operation merges the shared part of evolution
histories, and in so doing, makes the ‘branching points’ explicit.

– Given a set F of confluent processes of G, we use pr(F) to denote the set
of finite prefix of F . Then we can construct a general transition system G′3,

3 The reason general transition systems are needed here is largely due to indeterminate
evolution covers (introduced below).

8

called the coalescing of F , s.t. SG′ = pr(F), ŝG′ = Ĝ, and F
a−→G′ F ′ iff

F ≼E F ′ and šF
a−→F ′ šF ′ . It is crucial to note that, for all F ∈ SG′ , F/G′

is isomorphic to F and, therefore, a confluent process of G.
– The notions of granular events can be extended onto G′: t1 = F1

a−→G′ F ′
1

and t2 = F2
a−→G′ F ′

2 belong to a same granular event in G′ iff t1 belongs to
T1 in F ′

1/G
′, t2 belongs to T2 in F ′

2/G
′ and min(T1) = min(T2).

Although we can coalesce arbitrary sets of confluent processes, it makes more
sense to coalesce a set of confluent processes that are 1) mutually incomparable
w.r.t. ≼ and 2) able to fully cover the set of system evolutions. The second
requirement can be formalised in the same spirit as for the definition of unfolding.
A confluent process F covers a set of system executions, i.e. those which are a
linearisation of some prefix of F , denoted lin(pr({F})). F fully covers the set of
system evolutions if L(G) = lin(pr(F)). We call such set of confluent processes
an evolution cover of G.

– An evolution cover F of G is an MCP evolution cover if all F ∈ F are MCPs.
– A transition system G′ is a CP unfolding of G if there exists an evolution

cover F of G s.t. G′ is the coalescing of F .
– A transition system G′ is a MCP unfolding of G if there exists an MCP

evolution cover F of G s.t. G′ is the coalescing of F .
– If, furthermore, for all L ∈ L(G), there exists a unique F ∈ pr(F) s.t.

L ∈ lin(F), we call F determinate.

For determinate evolution covers, we can give a simplified (alternative) defi-
nition to CP unfolding:

– We say an acyclic TS G is a confluent tree if, for all s ∈ SG, s/G is confluent
(denoting a concurrent run).

– We say a confluent tree G′ is a confluent tree unfolding of TS G if G′ is an
unfolding of G.

Lemma 10. G′ is a confluent tree unfolding of G iff there is a determinate
evolution cover F s.t. G′ is the coalescing of F .

The notion of events on top of confluent tree unfoldings is exactly the same
as that on top of confluent processes, i.e. granular events quotiented by an equiv-
alence which is the transitive closure of or-causal coupling relation.

However, the above definition is not extendable to general CP unfolding
because of indeterminate evolution cover. For instance, when the two confluent

processes in the above figure are coalesced into G′, transitions s0
b−→ s1 and

s′0
b−→ s′1 will collapse in G′ into one transition, and so are states s2 and s′2 into

one state, say g2 ∈ SG′ . (Note that states s3 and s′3 will not collapse in G′; they

are mapped resp. to say g3, g
′
3 ∈ SG′ .) Since s0

b−→ s1 and s2
b−→ s3 belong to the

same granular event in the left confluent process and s′0
b−→ s′1 and s′2

b−→ s′3 to
the same granular event in the right, using the above definition we can see that

9

b

c

a

d

s0

s1

s2

s’0

s’1

s’2

d
c

a

b

s3 s’3

Fig. 4. Label ambiguity v.s. event ambiguity

s2
b−→ s3 and s′2

b−→ s′3 belong to the same event in G′. Thus, from state g2 by
firing the same event we can reach two different states, i.e. g3 and g′3. This is
contradictory with the intuition of events. In summary, confluent tree unfolding
supports the notion of events, whereas CP unfolding only supports the notion
of granular events.

So far our problem statement and foundation work are developed mostly
within the interleaving framework. But we have witnessed the usefulness of ‘event
intuition’ in understanding notions like prefix, postpone and back-propogation
for confluent processes. As we start to deal with more sophisticated CP branching
processes, however, we will see that it is crucial (due to simplicity and intuitive-
ness) to reason directly in terms of events, concurrency, causality and conflict
rather than in terms of transitions, commutativity, enabling and disabling.

Thus, we will move gradually into event-based models, e.g. configuration
structures and granular configuration structure. Configuration structures are the
non-interleaving incarnation of confluent tree unfolding and is thus built from
events; while granular configuration structure is the non-interleaving incarnation
of CP unfolding and is built from granular events.

Below we start with a quick introduction to the two structures, focusing on
the correspondence with their transition system incarnations. Granular configu-
ration structure will be the basis of our MCP unfolding (that requires indetermi-
nate evolution covers, c.f. the example in Figure 1). We will present a formal and
detailed introduction of granular configuration structure in the next section4.

A configuration structure (E,C) consists of a set E of events and a set C
of configurations. Each configuration c ∈ C is a subset of events, which repre-
sents the global state reached after firing exactly the set c of events. The empty
configuration represents the initial state.

For example, the left graph in the Figure below is a confluent tree G. We can
coarsely partition transitions in G into events as shown in the middle graph, or
we can finely group them into granular events, which do not form a partitioning
of transitions (e.g. e3 and e3′ share a transition), as shown in the right graph.
In the middle graph each state in G is mapped to a configuration. Given a state
s mapped to c, if s can transit to s′ via a transition belonging to e, then the s′

is mapped to c ∪ {e}. The soundness of this rule is implied by the fact that, no

4 A formal and detailed introduction of configuration structures can be found in [8].

10

matter what system execution one uses to reach a given state in F , the set of
events fired by the execution is the same.

a

b

b

b

c

c

c

a

a

{e1,e2,e3,e3’}

e2 e1

{}

e3 e3

{e1}{e2}

{e1,e2}

{e1,e3}{e2,e3}

{e1,e2,e3}

e3

e1

e1 e2

e2

e3 e3’/

e2 e1

{}

e3e3’

{e1}{e2}

{e1,e3}{e2,e3’}

e1

e1 e2

e2

{e1,e2}

d

d
e4

e4

e2 e2

e4

e4

{e2,e4} {e2,e4}

{e4} {e4}

b

Fig. 5. From transitions to events and granular events

Similarly in the right graph each state s in G is mapped to a granular con-
figuration c. But the property that all system executions to a same state fire the
same set of events is no longer true. c here denotes, instead, the set of granular
events whose member (i.e. transition) has occured in s/G. Thus it is possible
that, by firing one transition in G, we can fire more than one event in the gran-
ular configuration structure, e.g. from {e1, e2} to {e1, e2, e3, e3′} by c and from
{e1, e3} to {e1, e2, e3, e3′} by b in the right graph.

Discussion: The notion of confluent tree unfolding can be of independent inter-
ests. Indeed it provides a powerful tool for analysing previous works such as [18,
12] and [8].

In [18, 12] the class of confluent processes one can produce by unfolding a
TS G is highly constrained. It is because an independence relation is imposed
on top of G, i.e. the so called transition systems with independence (TSI). The
independence relation marks (statically) a selected subset of diamonds in G
as ‘true diamonds’, and requires all diamonds in confluent processes originating
from true diamonds. Furthermore, Axiom 3 of TSI requires that no true diamond
can be unfolded sequential, i.e. if two consecutive edges of the diamond are
unfolded in F , then the whole diamond is unfolded in F .

The work in [8] removes the static independence restriction on transitions.
Thus a confluent process can utilise any possible diamond in G, and a diamond
can be unfolded sequentially in one confluent process while concurrently in an-
other one (c.f. the example in Figure 10 of [8]).

Furthermore, Axiom 4 of TSI imposes a transitivity-like condition on the
set of true diamonds so that they form a global network of diamonds and the
existence of a true diamond at one location implies the existence of a set of
true diamonds at its neighboring locations. Therefore, Axiom 4 combined with
Axiom 3 ensures that 1) or-causality does not occur in confluent processes (and
thus granular events coincide with events), and 2) non-local conditions become
reducible to local ones (since the non-local part is guaranteed by the transitivity).

11

One example is, given a confluent process F of a TSI G and an event T in F , T
is postponed at a state s ∈ SF that is adjacent to o(T) via transition s

a−→ o(T)
iff a ⋄f(s) lb(T) in G.

Other related works that transform transition systems into non-interleaving
models include the region theory of Petri net [1]. However, it is beyond the scope
of this paper for detailed comparison.

5 Unfolding Procedure

In this section we first introduce granular configuration structures which is an
adaptation of labelled configuration structures [15, 14, 8]. Granular configuration
structures 1) restore the causality relation on events which can greatly simplify
the definition of advanced notions like prefixes, immediate conflicts, etc. and 2)
improve the expressiveness so that CP/MCP unfoldings can be fully captured.
Then we give the MCP unfolding procedure to unfold transition systems into
granular configuration structures.

5.1 Granular configuration structures

Definition 2. A granular configuration structure (or simply GCS) over alpha-
bet Σ is a triple (E≤, C, lb), where

– E is a partially ordered set of granular events (or henceforth simply events),
where ≤ is the well-founded causality relation,

– lb is a labelling function mapping events of E into labels of Σ,
– and C is a set of granular configurations (or simply configurations), where

each configuration c ∈ C is a finite ≤-downward closed subset of E and e ∈ E
implies [e] ∈ C.

A configuration c can be thought of as representing a state reached after the
execution of exactly the set c of granular events. The empty configuration {}
represents the initial state and is a required member of C in our model.

Below we fix a GCS, cs = (E≤, C, lb), and introduce some basic notions for
GCSes.

– We say cs is finitely branching if the Hasse diagram of E≤ is finitely branch-
ing. In such a GCS, concurrency and conflict are bounded and infinite con-
figurations are derivable from finite ones.

– [e] denotes the ≤-downward closure of {e} while [e]− denotes [e] \ {e}.
– Given X ⊆ E, [X] and [X]− denote

∪
e∈X [e] and

∪
e∈X [e]− resp.

– We say a nonempty finite subset δ ⊆ E is a consistent set if there is some
c ∈ C such that δ ⊆ c. Otherwise, δ is an inconsistent set.

– A consistent ≤-downward closed δ ⊆ E is called a pre-configuration.
– We say an event e is activated at pre-configuration δ, or e ∈ ac(δ), if [e]− ⊆ δ

and c ⊎ {e} is consistent.

12

– We say cs is well-activated if lb(e) = lb(e′) ∧ e ||≤ e′ ∧ {e, e′} is consistent
implies [e]− ||⊆ [e′]−.

– We say an activated event e at pre-configuration δ is pending at δ, or e ∈
acpn(δ), if ∀e′ ∈ δ : e ||≤ e′ =⇒ lb(e) ̸= lb(e′).

– We say an activated event e is p-pending at pre-configuration δ, or e ∈
acpp(δ), if ∃e′ ∈ δ : e ||≤ e′ ∧ lb(e) = lb(e′). Given a pre-configuration δ, we
say δ is p-pending closed if acpp(δ) = {}; otherwise we use δ∗ to denote the
p-pending closure of δ.

– We say there is a transition from c to c′, written c
a−→C c′, if c ⊂ c′ and there

exists an event e ∈ acpn(c) s.t. lb(e) = a and {e} ⊆ c′ \ c ⊆ (c ⊎ {e})∗ \ c∗.

The definition of transitions here is unconventional, esp. in comparison with
configuration structures. A transition from c to c′ may involve multiple events
(c′\c). Some of them, those pending events from acpn(c), are the ‘driving events’
of the transition while others, those p-pending events from (c⊎{e})∗ \ (c∗∪{e}),
are ‘auxilary ones’ piggybacked on the transition. Note that only those freshed
generated p-pending events (due to the driving ones) can be piggybacked, not
any old one from c∗ \ c.

Thus a GCS gives rise to an acyclic transition system, and the definitions
like ‘subsequent to’ relation ⊑, (system) execution, etc. carry over. Furthermore,
note that c ⊂ c′ does not imply there exists an execution from c to c′ in GCSes;
this is very different from configuration structures.

– We write eb(c) = {a ∈ Σ | c a−→C} to denote the set of enabled actions at c.

succ(c) = {c′ ∈ C | c a−→C c′} denotes its set of successor configurations.
– We say cs is well-connected if all the configurations in C are −→C-reachable

from {} and, for all c ∈ C and e ∈ acpn(c), there exists c′ ∈ C s.t. c
lb(e)−−−→C

c′ ∧ e ∈ c′.

Based on the above, we can say cs is well-formed if it is finitely branching,
well-activated and well-connected. Well-formed GCSes have roughly the same
expressiveness as (general) event structures from [17]. We prefer to use GCSes in
this paper mainly because of its affinity to transition systems. We give a few basic
properties of well-formed GCSes, esp. those in comparison with configuration
structures.

– Given a finite D ⊆ C, we say D is downward-closed (w.r.t. ⊑) if c ⊑ c′ ∈
D =⇒ c ∈ D. We use D↓ to denote the ⊑-downward closure of D.

– We say a finite subset of configurations D ⊆ C are compatible if
∪
D is

consistent and disjoint from
∪

c∈D(c∗ \ c).
– We say cs is closed under bounded union if, for all compatible subsets D ⊆ C,

∃c′ ∈ C :
∪

D ⊆ c′ ⊆ (
∪
D)∗ \

∪
c∈D(c∗ \ c).

– We say cs is free of auto-concurrency if lb(e) = lb(e′) and e ||≤ e′ implies
@c ∈ C : [e′]− ∪ [e] ⊆ c ∧ e′ ∈ ac(c). 5

5 GCSes with auto-concurrency can be useful, on the other hand, for unfolding systems
like general Petri Net.

13

Lemma 11. cs is free of auto-concurrency and closed under bounded union.

Lemma 12. If there is a non-empty execution from c to c′ such that e ∈ ac(c)
and c′ ∪ {e} is consistent, then we have either e ∈ c′ or e ∈ ac(c′).

GCSes are the non-interleaving incarnations of the coalescing of confluent
processes: each configuration in a GCS uniquely corresponds to an acyclic con-
fluent transition system.

Lemma 13. Given any c ∈ C, cs ◃ {c}↓, i.e. the restriction of cs to {c}↓, gives
rise to an acyclic confluent transition system, i.e. CP(c) = ({c}↓,Σ ,−→{c}↓ , {}),
where CP () is an injective function.

For the rest of this paper we only consider well-formed GCSes and simply
call them GCSes. Advanced notions of GCSes can be easily defined by using the
restored causality relation:

– Given a finite ≤-downward closed subset X ⊆ E, we say X is p-pending
event closed (or simply pp-event closed) if, for all pre-configuration δ ⊆ X
and event e ∈ X, e ∈ acpn(δ) implies (δ∪{e})∗ ⊆ X. We denote the pp-event
closure of X as X⋆.

– A finite subset X ⊆ E is a prefix if X is both ≤-downward closed and
pp-event closed.

– A finite ≤-antichain K ⊆ E is an immediate conflict (IC) if [K]⋆ is a minimal
prefix that is not conflict-free.

Lemma 14. K is an IC implies K ⊆ acpn([K]−).

Based on these notions, we can recover a purely event-based definition of
GCS-like structures (i.e. without resorting to the use of configurations):
Granular Event Structures (GESes): A granular configuration structure
(say cs) can be re-formulated (say using transformation CE(cs)) into a granular
event structure: a granular event structure is a triple, es = (E≤, IC, lb), where
IC is a set of immediate conflicts (IC). An immediate conflict K ∈ IC is a finite
≤-antichain of events satisfying that, for all K ∈ IC, [K] contains no IC other
than K and, for all e ∈ E, [e] contains no IC.

Conversely, we can also recover a granular configuration structure from es
(say using transformation EC(es)). Given cs, we say a finite subset X ⊆ E
is consistent if [X] contains no IC. This enables us to recover the definition
of pre-configuration, activated/pending/p-pending events and well-activatedness.
On well-activated es, we say a pre-configuration δ ⊆ E is a configuration if there
exists another pre-configuration δ′ ⊇ δ s.t. (ac(δ′) ∪ δ′) ∩ acpp(δ) = {}. Finally
we say es is well-formed if it is well-activated, finite-branching and satisfying
e ∈ E =⇒ [e] is a configuration.

We can show that well-formed granular event structures correspond exactly
to well-formed granular configuration structures:

Theorem 2. cs = EC(CE(cs)) and es = CE(EC(es)).

14

5.2 Unfolding TSes into GCSes

The aim of our procedure is to construct the Hasse diagram of configurations in
a roughly bottom up fashion. Starting from the empty configuration, we move up
step by step, deriving larger configurations from smaller ones. Each configuration
generated corresponds to a finite MCP prefix (up to isomorphism).

However, since transitions between configurations follow ‘big-step semantics’
(i.e. firing multiple events), a simpler and more elegant approach is to first build
the Hasse diagram of pre-configurations, where the transitions follow ‘small-step
semantics’. Each pre-configuration corresponds to a finite PCP prefix. Then, we
remove all pre-configurations that are not configurations (called nonstable pre-
configurations) and re-connect what are left, i.e. configurations, by big steps.

The search for new PCP prefixes is guided by a key sub-procedure of ex-
tending one PCP (say F) into another PCP (say F ′). Firstly, we calculate the
maximal back-propagation of actions for F and, if there is no corresponding
events existing for those points, we create new ones accordingly. Then we extend
F by those events to generate F ′ (i.e. elongate or relax F depending on the
events being pending or p-pending), which is a PCP according to Theorem 1.
Note that in generating F ′ there is a ‘prefix-closure’ effect. That is, F ′ might
have more than one immediate prefix and some of them (other than F) might
be non-PCP and, therefore, not generated yet. Thus in generating F ′ we also
need to generate some of its prefixes.

Now let us formalise the unfolding procedure and define the notions of MCP
unfolding and MCP branching processes:

– Given a TS G, a labelled GCS over G is a tuple lcs = (E≤, C, lb, st), where
(E≤, C, lb) constitutes a GCS over Σ and st : C → SG is a function mapping
configurations to states.

– Given lcs over G, we say lcs is an MCP unfolding of G if (C,Σ,−→C , {}) is
an MCP unfolding of G via homomorphism f = st.

– Given lcs over G, we say lcs = (E≤, C, lb, st) is an MCP branching process
of G if there exists an MCP unfolding lcs′ = (E′≤, C ′, lb′, st′) of G s.t. E is
a prefix of (E′≤, C ′, lb′), C = C ′ ◃ E, lb = lb′ ◃ E and st = st′ ◃ C.

Our procedure, lcs = U(G) (c.f. Figure 6), unfolds TSes in a maximally
concurrent fashion into a labelled GCS over G.

The basic data structure is (E, preC, lb, st). E and preC store resp. the
set of generated events and the set of generated pre-configurations. The back-
propagation information for each pre-configuration is stored in function bppn
and bppp resp. We create new events based on such information, which are then
passed on from smaller pre-configurations to larger ones and stored in function
acpn and acpp resp. as activated events.

Then, adding activated events to existing pre-configurations produces the set
of potential extensions, ext. Some of the extensions are PCPs, i.e. those in the
set pcp. The definition of pcp is recursive, utilising Theorem 1 and starting from
the empty pre-configuration. But, due to the ‘prefix closure’ effect mentioned
above, PCP extensions cannot be realised ‘eagerly’ by immediately throwing

15

them into preC. Rather, the realisation proceeds in steps by first realising the
prefixes (i.e. sub-configuration6) of the PCP extensions, so that the expansion
of preC will preserve the ≼-downward closedness. We say a PCP prefix is ready
for realisation if it is unrealised but all its sub-configurations are realised. The
set of ready-for-realisation PCP prefixes is given in nxt.

Thus, starting from an empty preC we pick one pre-configuration (say c′) a
time from nxt and realise by adding c′ to preC (line 3-5 of function Unfold in
Figure 6). In the mean time we calculate (c.f. line 8-9 of function Realise) the
set of activated events inheritable by c′ from its immediate sub-configurations
(i.e. •c′), and also derive (line 4-7 of function Realise) the new bppn and bppp
functions based on those of •c′. Some useful notations used in such calcula-
tion/derivation are given below.

Given any c, c′ = c ⊎ {e} ∈ preC, we define

– prppn(c
′, c, a) =

• {[e]} if e ∈ acpn(c) ∧ ¬lb(e)3st(c) a ∨ e ∈ acpp(c) ∧mbppn(c, a) = {c}, or
• min(mbppn(c, a) ∪ {[e]}) if otherwise;

– prppp(c
′, c, a) =

• bppp(c, a) if lb(e) ̸= a,
• {c0 ∈ bppp(c, a) | c0 ||⊑ [e]−} if e ∈ acpp(c) ∧ lb(e) = a, or
• {c0 ∈ bppn(c, a) ∪ bppp(c, a) | c0 ||⊑ [e]−} if e ∈ acpn(c) ∧ lb(e) = a;

– hrtpn(c
′, c) = {e′ ∈ acpn(c) | e ∈ acpp(c) ∨ (e ∈ acpn(c) ∧ lb(e)3st(c) lb(e

′))}
– hrtpp(c

′, c) = {e′ ∈ (acpn(c) ∪ acpp(c)) | (e′ ∈ acpn(c) =⇒ e ∈ acpn(c) ∧
lb(e) = lb(e′)) ∧ (lb(e) = lb(e′) =⇒ [e′]− ||⊑ [e]−)}.

Note that hrtpn(c
′, c) produces the set of pending events c′ can inherit from

c while hrtpp(c
′, c) produces the set of p-pending events c′ can inherit from c.

On the other hand, prppn(c
′, c, a) produces the information about how action

a can be back-propagated through edge (c, c′) into the sub-configurations while
prppp(c

′, c, a) about the p-pending points of a through edge (c, c′).
Then, if c′ is a PCP and has maximal back-propagation not covered by acti-

vated events inherited from •c′, we create new ones to cover them (c.f. procedure
GenEvent). An event (say e) can be created only if its origin (say c) is a config-
uration according to c′: the condition is implemented as the predicate c isCFGin
c′. After e is created at c, we propagate e upward to its super-configurations (c.f.
line 4-8 of procedure GenEvent).

Finally, after the set of pre-configurations fully generated, we filter out non-
stable pre-configurations and produce the set of configurations (c.f. line 6 of
function Unfold). The intuition is that a PCP pre-configuration is a MRP if
acpp(c

′) = {} and the prefixes of MRP pre-configurations are configurations.
We can illustrate the procedure by unfolding the broken cube originally from

Figure 1. In the step 0 of Figure 7 the initial state is mapped to configuration
{}. The set of activated events at {}, i.e. acpn({}) and acpp({}), is initialised

6 Actually it should be sub-pre-configurations, i.e. pre-configurations which are subset
of the original pre-configurations.

16

Data Structure:
(E, preC, lb, st) = ({}, {{}}, {}, {({}, ŝ)});
acpn = {}; acpp = {}; bppn = {}; bppp = {};

Derived Values, Functions and Predicates:
ext = {c ∪ {e} | c ∈ preC ∧ e ∈ acpn(c) ∪ acpp(c)}
pcp = {c ∪ {e} | c ∈ pcp ∧ (e ∈ acpn(c) ∧ [e]− ∈ mbppn(c, lb(e))

∨e ∈ acpp(c) ∧ [e]− ∈ mbppp(c, lb(e)))}
nxt = {c′ ∈ ext \ preC | ∃c′′ ∈ pcp : c′ ⊆ c′′ ∧ ∀c ∈ ext : c ⊂ c′ =⇒ c ∈ preC}
c isCFGin c′ = ∀e ∈ c′ \ c : [e]− /∈ bppp(c, lb(e)) ∧ ∀a ∈ Σ : bppp(c, a) ∩ bppp(c

′, a) = {}
•c′ = {c | c ∈ preC ∧ c ⊎ {e} = c′}

Function Unfold((S,Σ,∆, ŝ))
Begin
1 Foreach a ∈ eb(ŝ) do Set bppn({}, a) = {{}};
2 GenEvent({});
3 While nxt ̸= {}
4 Pick any c′ ∈ nxt and Realise(c′);
5 If c′ ∈ pcp Then GenEvent(c′);
6 Set C = {c ∈ preC | ∃c′ ∈ pcp : c ⊆ c′ ∧ acpp(c) ∩ c′ = {} = acpp(c

′)};
7 Return (E,C, lb, st)
End

Procedure Realise(c′)
Begin
1 Assume c′ = c ⊎ {e} for some c ∈ preC;
2 If e ∈ acpn(c) Then s′ = ∆(st(c), lb(e)) Else s′ = st(c);
3 Add c′ to preC and (c′, s′) to st() ;
4 Foreach a ∈ eb(st(c′)) do
5 Set bppn(c

′, a) =
∩

c∈•c′{c1 : preC | ∃c0 ∈ prppn(c
′, c, a) : c0 ⊆ c1 ⊆ c′};

6 Foreach a ∈ Σ s.t. D =
∪

c∈•c′ prppp(c
′, c, a) ̸= {} do

7 Set bppp(c
′, a) = {c0 ∈ D | ∀c ∈ •c′ : c0 ⊆ c =⇒ c0 ∈ prppp(c

′, c, a)};
8 Set acpn(c

′) = {e′ ∈
∪

c∈•c′ hrtpn(c
′, c) | ∀c ∈ •c′ : [e′]− ⊆ c =⇒ e′ ∈ hrtpn(c

′, c)};
9 Set acpp(c

′) = {e′ ∈
∪

c∈•c′ hrtpp(c
′, c) | ∀c ∈ •c′ : [e′]− ⊆ c =⇒ e′ ∈ hrtpp(c

′, c)}
End

Procedure GenEvent(c′)
Begin
1 Foreach (a, c) ∈ mbppp(c

′) ∪mbppn(c
′)

s.t. @e ∈ E : (lb(e), [e]−) = (a, c) ∧ c isCFGin c′ do
2 Create a new event e, and add e to E and (e, a) to lb();
3 Add e to acpn(c) and set D = {c};
4 While M = min({x ∈ preC | x ⊃ c} \D) ̸= {} do
5 Pick any c′′ ∈ M and add c′′ to D;
6 If ∀c ∈ •c′′ : [e]− ⊆ c =⇒ e ∈ hrtpn(c

′′, c) Then Add e to acpn(c
′′)

7 Else If ∀c ∈ •c′′ : [e]− ⊆ c =⇒ e ∈ hrtpp(c
′′, c)

8 Then Add e to acpp(c
′′) Else Add {c ∈ preC | c ⊇ c′′} to D

End

Fig. 6. An unfolding procedure

17

to be empty (i.e. no inheritance). Since the three enabled actions at the initial
state are maximally back-propagated to {} but there is no activated events at
{} to match them, we create three new events e1, e2 and e3 at {} (note the
use of symbol !) and add them to acpn({}). Thus the initial state is labelled as
{}/{e1, e2, e3} (in the style of c/acpn(c)). Firing one of the generated events say
e1 leads to a new extension, say {e1}, which is a new member of nxt.

In the step 1, we pick a member say {e1} of nxt and realise it. {e1} is mapped
to s1 and acpn({e1}) inherits {e2, e3} from {}, which fully covers the maximal
back-propagation of the two actions enabled at s1. Thus, although {e1} is a PCP
and procedure GenEvent is called, no new event will be created. Similarly we
can also realise {e2} and {e3}.

Now {e1, e3} is a member of nxt, which we can pick in the step 2 to realise.
Note that {e1, e3} can inherit e2 from {e1} but not from {e3} (since e2 and
e1 do not form a diamond at {e3}). This inconsistency leads to e2 not being
added to acpn({e1, e3}). {e1, e3} is a PCP and in calling GenEvent, however,
a new event e2′ is created at {e1} to cover the maximal back-propagation of the
enabled b action at s5 (mapped to {e1, e3}). e2′ can be inherited and added to
acpn({e1, e3}). Similarly, the back-propagation from {e1, e2} and from {e2, e3}
leads to the creation of e3′ at {e1} and e1′ at {e2, e3} resp.

e1′ at {e2, e3} can lead to a PCP extension but not so for e2′ and e3′ at {e1}.
Instead, they are PCP prefixes since {e1, e2, e3′} and {e1, e2′, e3} are PCP ex-
tensions. Therefore, all the possible extensions so far are inside nxt. In realising
these extensions, {e1, e3′} and {e1, e2′} need to be realised before {e1, e2, e3′}
and {e1, e2′, e3} resp. to preserve the ≼-downward closedness of preC.

In the step 3, obviously {e1, e2′} inherits e3 and e3′ from {e1}; and {e1, e3′}
inherits e2 and e2′. But e3′ at {e1, e2′} and e2′ at {e1, e3′} will lead to extensions
outside nxt. So the outcome is a GCS with three maximal configurations. Two
of them, {e1, e3, e2′} and {e1, e2, e3′}, are mapped to a same terminating state
s7. (In contrast, state s5 is split into {e1, e3} and {e1, e3′} while s6 into {e1, e2}
and {e1, e2′}.)

The broken cube example does not have or-causality; thus the part of the
procedure related to non-stable pre-configuration and p-pending points/events
has not been utilised. We give a second example in Figure 8 to do so.

The original transition system is given as the top-left graph in the figure.
The top-right graph is its MCP unfolding, which is the coalescing of two MCPs
({a1, b1, c1, c2, d2} and {a1, b1, c2, d1, d2}). The MCP of {a1, b1, c1, c2, d2} is
drawn with thick-line edges and strong-colored configurations.

The bottom graph is the Hasse diagram of pre-configurations (with some
edges missing). The faint-colored pre-configurations in bottom graph are non-
stable pre-configurations; they will be removed in order to produce the Hasse
diagram of configurations. Note further that {a1, b1, c2} is a configuration in the
MCP of {a1, b1, c1, c2, d2} but not so in that of {a1, b1, c2, d1, d2}, even though it
is a pre-configuration being used in the generation of both MCPs. Note that the
set of pre-configurations being used to generate the MCP of {a1, b1, c1, c2, d2}
are those connected up by edges in the graph.

18

!e1

!e2

!e3

{e1}

{e2}

{e3}

{}/{e1,e2,e3}

{e1}/{e2,e3,e2’,e3’}

{e3}

{e2}

{e1,e3}/{e2’}

{e1,e2}/{e3’}

{e2,e3}/{e1’}

{e1}/{e2,e3}

{e3}

{e2}

{e1,e3}/{e2’}

{e1,e2}/{e3’}

{e2,e3}

{} {}

!e1’

{e2,e3,e1’}

{e1,e3,e2’}

{e1,e2,e3’}

(Step 0)

(Step 2) (Step 3)

!e3’

{e1,e3’}/{e2,e2’}

{e1,e2}/{e3’}

{e1}/{e2,e3}

{e3}/{e1,e2}

{e2}/{e1,e3}

{e1,e3}

{e1,e2}

{e2,e3}

{}

(Step 1)

e3
e2

!e2’

{e2,e3,e1’}

{e1,e2’}/{e3,e3’}{e1,e2’}
{e1,e3’}

e2
e2’

e3’

e3

e3

e2

e1

e1

a

b

c

s1

s5 s7

s6

Fig. 7. Unfolding of the broken cube

a

b

c

d

{}

{a1}

{b1}

{a1,b1}

{b1,c2}

{b1,d2} {b1,c2,d2}

{a1,d1}

{a1,c1}

{a1,b1,c2,d1,d2}

{a1,b1,c1,c2,d2}

{a1,b1,c2}

{a1,b1,d2}

{a1,b1,d1,d2}

{a1,b1,c1,c2}

{ a 1 , d 1 }

{ a , b , d 1 }

{ }

{ a 1 }

{ b 1 }

{ a 1 , b 1 }

{ a 1 , c 1 }

{ a , b , c 1 }

{ a 1 , b 1 , c 1 , c 2 , d 2 }

{ a 1 , b 1 , c 2 , d 1 , d 2 }

{ a 1 , b 1 , c 1 , c 2 }

{ b 1 , c 2 }

{ a 1 , b 1 , d 2 }

{ b 1 , c 2 , d 2 }

{ a 1 , b 1 , d 1 , d 2 }

{ a 1 , b 1 , c 2 }
{ a 1 , b 1 , c 1 , d 2 }

{ a 1 , b 1 , c 2 , d 1 }

{ b 1 , d 2 }

{ a 1 , b 1 , c 2 , d 2 }

Fig. 8. P-pending event and nonstable pre-configuration

19

We can show that the output of function Unfold indeed is the MCP un-
folding of G:

Theorem 3. U(G) is an MCP unfolding of G.

Acknowledgements We thank Xiaoquan Wu for implementing a prototype
unfolder based on the algorithm of this paper. Bill Roscoe and Henri Hansen
commented on the earlier ideas of the paper. We acknowledge support from the
Macau FDCT project 041/2007/A3 and EU FP7 project IST 231167.

References

1. Eric Badouel, Luca Bernardinello, and Philippe Darondeau. The synthesis problem
for elementary net systems is np-complete. Theor. Comput. Sci., 186(1-2):107–134,
1997.

2. Eike Best and Raymond R. Devillers. Sequential and concurrent behaviour in petri
net theory. Theor. Comput. Sci., 55(1):87–136, 1987.

3. Eike Best and César Fernández. Nonsequential processes : a Petri net view, vol-
ume 13 of EATCS Monographs on TCS. Springer-Verlag, 1988.

4. P. Godefroid. Partial-order Methods for the Verification of Concurrent Systems:
an Approach to the State-explosion Problem, volume 1032 of LNCS. Springer, 1996.

5. Ursula Goltz and Wolfgang Reisig. The non-sequential behavior of petri nets.
Information and Control, 57(2/3):125–147, 1983.

6. J.F. Groote and M. P. A. Sellink. Confluence for process verification. Theoretical
computer science, 170(1-2):47–81, 1996.

7. Jeremy Gunawardena. Causal automata. TCS, 101(2):265–288, 1992.
8. Henri Hansen and Xu Wang. On the origin of events: branching cells as stubborn

sets. In PETRI NETS 2011, LNCS 6709, 2011.
9. Xinxin Liu and DavidWalker. Partial confluence of proceses and systems of objects.

TCS, 206(1-2):127–162, 1998.
10. Robin Milner. Concurrency and Communication. Prentice-Hall, 1988.
11. D. A. Peled. All from one, one for all: on model checking using representatives. In

Proceedings of the 5th International Conference on Computer Aided Verification,
volume 697 of LNCS, pages 409–423. Springer, 1993.

12. Vladimiro Sassone, Mogens Nielsen, and Glynn Winskel. Models for concurrency:
Towards a classification. Theor. Comput. Sci., 170(1-2):297–348, 1996.

13. A. Valmari. Stubborn sets for reduced state space generation. In ICATPN, volume
483 of LNCS, pages 491–515. Springer, 1989.

14. R. J. van Glabbeek and G. D. Plotkin. Configuration structures, event structures
and petri nets. Theoretical Computer Science, 410(41):4111–4159, 2009.

15. Rob van Glabbeek and Ursula Goltz. Refinement of actions and equivalence notions
for concurrent systems. Acta Informatica, 37(4):229–327, 2001.

16. Rob J. van Glabbeek and Gordon D. Plotkin. Event structures for resolvable
conflict. In MFCS 2004, volume 3153 of LNCS, pages 550–561, 2004.

17. Glynn Winskel. Event structures. In Advances in Petri Nets, volume 255 of LNCS,
pages 325–392. Springer, 1987.

18. Glynn Winskel and Mogens Nielsen. Models for concurrency. In Handbook of logic
in Computer Science, volume 4. Clarendon Press, 1995.

19. A. Yakovlev, M. Kishinevsky, A. Kondratyev, L. Lavagno, and M. Pietkiewicz-
Koutny. On the models for asynchronous circuit behaviour with or causality.
FMSD, 9(3):189–233, 1996.

20

