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Abstract

Probabilistic timed automata are a suitable formalism to model systems with real-time,
nondeterministic and probabilistic behaviour. We study two-player zero-sum games on
such automata where the objective of the game is specified as the expected time to reach
a target. The two players—called player Min and player Max—compete by proposing
timed moves simultaneously and the move with a shorter delay is performed. The first
player attempts to minimise the given objective while the second tries to maximise
the objective. We observe that these games are not determined, and study decision
problems related to computing the upper and lower values, showing that the problems
are decidable and lie in the complexity class NEXPTIME N co-NEXPTIME.

Keywords: Probabilistic Timed Automata, Two-Player Games, Competitive
Optimisation, Controller Synthesis

1. Introduction

Two-player zero-sum games on finite automata, as a mechanism for supervisory con-
troller synthesis of discrete event systems, were introduced by Ramadge and Won-
ham [1]. In this setting the two players—called Min and Max—represent the con-
troller and the environment, and controller synthesis corresponds to finding a winning
(or optimal) strategy of the controller for some given performance objective. Timed
automata [2] extend finite automata by providing a mechanism to model real-time be-
haviour, while priced timed automata are timed automata with (time-dependent) prices
attached to the locations of the automata. If the game structure or objectives are depen-
dent on time or price, e.g. when the objective corresponds to completing a given set of
tasks within some deadline or within some cost, then games on timed automata are a
well-established approach for controller synthesis, see e.g. [3 4} 15} 16l [7].

In this paper we extend the above approach to a setting that is quantitative in terms
of both timed and probabilistic behaviour. Probabilistic behaviour is important in mod-
elling, e.g., faulty or unreliable components, the random coin flips of distributed com-
munication and security protocols, and performance characteristics. We consider an
extension of probabilistic time automata (PTA) [8, 9} [10], a model for real-time sys-
tems exhibiting nondeterministic and probabilistic behaviour.

In our model, called probabilistic timed game arena (PTGA), a token is placed on
a configuration of a PTA and a play of the game corresponds to both players proposing
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a timed move of the PTA, i.e. a time delay and action under their control (we assume
each action of the PTA is under the control of exactly one of the players). Once the
players have made their choices, the timed move with the shorter delay is performed
and the token is moved according to the probabilistic transition function of the PTA.
Intuitively, players Min and Max represent two different forms of non-determinism,
called angelic and demonic. To prevent the introduction of a third form, we assume the
move of Max (the environment) is taken if the delays are equal. The converse can be
used without changing the presented results.

Players Min and Max choose their moves in order to minimise and maximise, re-
spectively, the objective function. The upper value of a game is the minimum expected
time that Min can ensure, while the lower value of a game is the maximum expected
value that Max can ensure. A game is determined if the lower and upper values are
equal, and in this case the optimal value of the game exists and equals the upper and
lower values.

The objectives frequently studied include reachability, which asks for certain loca-
tions to be eventually reached, safety, which asks for a given target set to be avoided, or
more complex properties, expressed using a formula of a linear temporal logic. The ob-
jective function is then an indicator function saying whether the property is satisfied on
a play, and the expected value then corresponds to the probability of the property being
true. In our paper we are interested in a more complex setting and study reachability-
time time objectives, which express the expected time to reach a given target set. These
objectives have many practical applications, e.g., in job-shop scheduling, where ma-
chines can be faulty or have variable execution time, and both routing and task graph
scheduling problems. For real-life examples relevant to our setting, see e.g. [11,7]. The
reachability-time objectives are a special case of weight or price objectives in which
different numbers are assigned to locations, and the value of the objective function de-
pends on the respective numbers and the time spent in the locations; in our setting, the
numbers are fixed to be 1 and the objective function simply sums the times spent in for
each location. Computing properties related to price functions often leads to undecid-
ability, even in non-probabilistic setting [[12} [13]. Studying simpler properties is thus
motivated by the desire to obtain decidable properties while still being able to study
sufficiently complex class of properties.

1.1. Contribution

We demonstrate the decidability of the problem of whether the upper (lower, or the
optimal when it exists) value of a game with reachability-time objectives is at most
a given bound. Our proofs immediately yield a NEXPTIME N co-NEXPTIME com-
plexity bound. To our best knowledge, this is the first decidability result for stochastic
games on timed automata in which the objective concerns a random variable that takes
non-binary values.

Our approach is based on extending the boundary region graph construction for
timed automata [14] to PTGAs and demonstrating that the reachability-time problem
can be reduced to the same problem on the boundary region graph. In particular, our
proof aims to show that the limit of the step-bounded value functions in the timed
automata and boundary region graph also coincide.



Generic results exist that allow one to prove that step-bounded values converge to
the step-unbounded value, but to the best of our knowledge none are readily applicable
in our setting where the state space is uncountable and little is known a priori about
the value functions. For example, Banach fixpoint theorem requires the value iteration
function (that takes a n-step value function and returns the n + 1-step value function)
to be a contraction on an underlying metric space, and it appears difficult to devise
the metric space so that the contraction property is easily obtained. Another possible
proof direction is Kleene fixpoint theorem, which requires Scott-continuity on the value
functions, which again is a property that is difficult to establish in our setting. We are
able to partly rely on the Knaster-Tarski fixpoint theorem which characterises the set
of fixpoints, but it is not strong enough to prove the convergence itself, for reasons
similar to the ones above. Several other theorems such as Brouwer fixpoint theorem
or Kakutani fixpoint theorem are generally not suitable for proving properties that we
require in turn-based stochastic games.

Hence, to prove that the limit of the step-bounded value functions is the desired
value, we need to take a tailor-made approach. We first inductively show that, when the
number of steps is bounded, then the value functions in timed automata and boundary
region graph coincide and are non-expansive within a region. Here we make use of
quasi-simple functions which generalise simple functions, previously used by Asarin
and Maler in the study of games over non-probabilistic timed automata [3]. Then,
using the non-expansiveness property, we show that the limit of the step-bounded value
functions in the timed automata and boundary region graph also coincide. In this part
we use Knaster-Tarski fixpoint theorem.

The definition of quasi-simple functions is a central component of our proof, as it
is strong enough to enable us to utilise an approach used in proofs of fixpoint theorems,
but on the other hand general enough to capture the values of reachability-time objec-
tives. We believe that it can serve as a step from simple functions towards functions
describing even more complex but still decidable objectives.

1.2. Related Work

Hoffman and Wong-Toi [15] were the first to define and solve the optimal controller
synthesis problem for timed automata. For a detailed introduction to the topic of qual-
itative games on timed automata, see e.g. [16]. Asarin and Maler [3] initiated the
study of quantitative games on timed automata by providing a symbolic algorithm to
solve reachability-time objectives. The works of [17]] and [14] show that the decision
problem for such games over timed automata with at least two clocks is EXPTIME-
complete. The tool UPPAAL Tiga [6] is capable of solving reachability and safety ob-
jectives for games on timed automata. Jurdziniski and Trivedi [18] show the EXPTIME-
completeness for average-time games on automata with two or more clocks.

A natural extension of games with reachability-time objectives are games on priced
timed automata where the objective concerns the cumulated price of reaching a target.
Both [4] and [S] present semi-algorithms for computing the value of such games for
linear prices. In [[12] the problem of checking the existence of optimal strategies is
shown to be undecidable, with [13]] showing undecidability holds even for three clocks
and stopwatch prices.



As for two-player quantitative games on PTAs, for a significantly different model
of stochastic timed games, deciding whether a target is reachable within a given bound
is undecidable [19]. In [20], continuous-time games are verified against time-automata
objectives, giving rise to systems whose semantics is related to the ones of [19]. The
work of [21] studies probability of satisfying Biichi objectives in a timed game where
perturbations of probabilities can take place, and [22]] studies games on interactive
Markov chains which are modelled as a game extension of timed automata.

Regarding one-player games on PTAs, in [23] the problem of deciding whether a
target can be reached within a given price and probability bound is shown to be un-
decidable for priced PTAs with three clocks and stopwatch prices. The work of [24]]
shows that the problem becomes decidable when the price functions are of a restricted
form. In [25]], simple functions are extended to devise a symbolic algorithm for com-
puting minimum expected time to reach a target in one-player games on PTAs; the
extension differs fundamentally from our quasi-simple functions. We also mention the
approaches for analysing unpriced probabilistic timed automata against temporal logic
specifications based on the region graph [8| 9] and either forwards [8] or backwards
[26] reachability. The complexity of performing such verification is studied in [27]]
for almost-sure reachability, and in [28] for PCTL properties and a restricted number
of clocks. Finally, [29] deals with a model similar to PTAs in which time evolves
continuously and controllable “fixed delay” events are introduced.

A preliminary version of the work was published in conference proceedings [30]. The
result presented in [30] required an assumption on the structure of the PTAs that en-
forced a terminal state to be reached almost surely under any pair of strategies. In this
paper we lift this restriction and consider arbitrary PTAs. Further, the proofs in [30]]
contain a significant flaw which required major changes to be made to the proof, also
for the restricted case. Thus, although the high-level idea behind the proof (bounding
the difference of values for two configurations whose clock values are close to each
other) stays the same, the actual steps of the proof changed significantly. Note that, al-
though [30] also introduces quasi-simple functions, the definition used here is different
(and not equivalent). Most notably, our proofs here use a much more “constructive”
approach when defining value functions.

1.3. Outline

The structure of the paper is the following. In Section[2]we introduce Stochastic Games
Arenas, which serve as semantics for games on PTAs. Games on PTAs are then intro-
duced in Section 3] and Section [4] defines boundary region abstraction, which plays a
fundamental role in our proofs. Section[3]provides the proofs for the main result.

2. Stochastic Game Arena

We now introduce a general notion of stochastic game arenas (SGAs), which will later
serve as semantics for the model we study. The reader may notice that our definition of
a stochastic game arena differs from the standard concurrent stochastic game arena [31}
32]]. However, as we shall demonstrate later, it captures precisely the semantics of
probabilistic timed game arena. In addition, presenting the basic concepts relating to



values in the general setting of SGAs allows us to use these concepts in the context of
both probabilistic timed game arenas and their abstractions.

2.1. Stochastic Game Arena: Syntax and Semantics

We write N for the set of non-negative integers, Q for the rational numbers, R for the
non-negative reals, and RS, for the reals with the maximum element co. A function
[+ (RS))" =R, is non-expansive if for any x,y € (RS)" we have | f(x)—f(y)| <
|x—y| where |-| is the max norm, i.e. |[(x1,...,%y)| = maxigi<n |Ti|- A discrete
probability distribution, or just distribution, over a (possibly uncountable) set () is a
function d : Q—0,1] such that 3 5 d(g) = 1 and supp(d) = {geQ|d(q)>0}is
at most countable. Let D(Q) denote the set of all discrete distributions over . We say
a distribution d € D(Q) is a point distribution if d(¢)=1 for some ¢ € Q. Given a set
@ and two functions f, f' : Q—RZ;, we state f<f" when f(¢)<f(¢) forall ¢ € Q.
A function f : Q—R>¢ is a convex combination of functions fi,..., f, : Q—Rxg
if there are non-negative coefficients p1, ..., p, such that >°" , p; = 1 and we have

flq) =20, pi-filq) forall g € Q.

Definition 1 (Stochastic Game Arena (SGA)). A stochastic game arena is given by a
tMPle G:(S7 AMina AMaxvainvaa)u Wina TMin » TMax) where:

e S is a possibly uncountable set of states;

o Anin and Apax are possibly uncountable sets of actions controlled by players
Min and Max respectively, and L is a distinguished action such that Apgin N
Amax = {1}

® Puin ¢ (SXAwmin)—D(S) and puax : (SX Anax)—D(S) are the probabilistic
transition (partial) functions for players Min and Max respectively, such that
PMin (S, L) and pyiax (s, L) are undefined for all s € S, and for any s € S either
there exists o € Apgin such that pyiin (8, &) is defined or there exists o« € Anpax
such that pyax (s, ) is defined;

o win : (Anmin X AMax)— (AMin U Amax) is a function specifying which of the ac-
tions chosen by the players takes place, requiring that for any («, ) € Anin X AMax
we have win(a, ) € {a, 8}, and moreover win(a, ) is never equal to L unless
a:ﬂ:J_"

o Tin ¢ (SXAmin)—~Rx0 and Tax © (S X AMax)—Rxo are the time delay (par-
tial) functions for players Min and Max respectively, specifying the delay asso-
ciated with performing an action in a state.

Note that SGAs introduced above are more general than classical stochastic games, in
particular SGAs contain information about the time delays of actions.

We say that an SGA is finite if S, Ayiin and Appax are finite. For any state s € S,
we let Aniin(s) denote the set of actions available to player Min in s, i.e., the actions
a € Anin for which pyin (s, @) is defined, letting Angin(s)={L} if no such action
exists. Similarly, Anax($) denotes the actions available to player Max in s and we let



A(8)=Amin(8) X AMax (s). From the conditions required of the probabilistic transition
functions of the players, we have (L, 1) & A(s) forall s € S.

A game on SGA G starts with a token in an initial state s € S and players Min
and Max construct an infinite play by repeatedly choosing enabled actions, and then
moving the token to a successor state determined by the probabilistic transition function
of the player proposing the action that is favoured by the win function. Formally, we
introduce the following auxiliary definition for an SGA.

Definition 2 (Probabilistic transition function of an SGA). For any stochastic game
arena G=(S, AMin, AMax, PMin, PMax, TMin; TMax) [he probabilistic transition func-
tion of G is given by the partial function p : (SX Apin X AMax)—D(S) where for
any s € S, a € Aniin and B € Apfax:

undefined  if (o, B) & A(s)
p(s,a,8) = ¢ pumin(s, @) ifwin(a, 8)=a
PMax (8, 8) otherwise.

Using this definition, if we are in state s and the action pair («, 5) € A(s) is chosen by
the players, then the probability of making a transition to s’ equals p(s, o, 3)(s’). We
similarly define the time delay function 7 of the SGA G by

undefined if («, 5) &€ A(s)
7_(570‘36) = TMin(S,a) ifWin(Oé,B):a
TMax(S, 3) otherwise.

A transition of G is a tuple (s, (a, 8), s") such that p(s, a, 5)(s")>0 and a play of G is
a finite or infinite sequence

<80, (011, 51), S1, (042, 52)7 sy Sy (O‘i+1aﬁi+1)» Sitls- - >

such that (s;, (11, Bi+1), Si+1) is a transition for all 0. The length of a play p,
denoted len(p), is defined as the number of transitions appearing in the play. For a
finite play p=(so, (a1, 81), 81, - - -, (ak, Br), Sk), let last(p) denote the last state s, of
the play. We write {2 (£2y) for the sets of infinite (finite) plays in G and £2(s) (£2¢(s))
for the sets of infinite (finite) plays starting from s € S.

Definition 3 (SGA Strategy). Let G:(S, AMin, AMam PMin, PMax> TMin TI\/Iax) be a
SGA. A strategy of Min is a function i : 2y— Anin such that p(p) € Awin(last(p))
for all finite plays p € (2;. A strategy x of Max is defined analogously and we let Yy
and Y\pax denote the sets of strategies of Min and Max, respectively.

For any finite play, a strategy of Min (Max) returns an action available to Min (Max)
in the last state of the play.

For a SGA G, state s of G and strategy pair (i, x) € XMin X XMax, let 29X (s)
(Qf“ X(s)) denote the set of infinite (finite) plays in which Min and Max play ac-
cording to 4 and Y, respectively. Given a finite play p € Qjﬁ‘ X(s), a basic cylin-
der set Cyl(p) is the set of infinite plays in £2/°X(s) for which p is a prefix. Us-
ing standard results from probability theory [33] we can construct a probability space



(21X (s), FX(s), Pri-X) where F*X(s) is the smallest o-algebra generated by the
basic cylinder sets and Prt"X : F—[0, 1] is the unique probability measure such that
for any finite play p={(so, (1, 81), 81, - -, Sk—1, (K, Bk), Sk) € Qf“x(s)

PriX(Cyl(p)) = TI0_, p(si—1, i, Bi) (1)

where pre(p,i)=(so, (a1, 1), 81, -, 8i—1, (i, Bi), s;) for all i<k.

Given a real-valued random variable f : 2—RE, the expression EL"X(f) denotes
the expected value of f with respect to the probability measure PrtX.

We extend Prt"X(f) also to the cases where the game is assumed to start from

a finite play p={(so, (a1, 51), $1,- - -, (e, Bk), Sk) as opposed to a state s, and we let
Privx = prl ’;E;), where the strategy 4, is defined from p by

/’Lﬂ(p,) = lu(<507 (ahﬂl)a S1y-++) (aka 5]6)7 Sk, (Oé;c—i-l?BI/f—&-l)? 5;6—',-17 cee (aevﬂe)v 5€>)

for all p'=(s},, ... (), B}), Sjq1,- - (e, Be), s¢) such that sp=s}, and p1,(p’) is de-
fined arbitrarily otherwise; the strategy ¥, is defined analogously. We then also use
[Ef-X defined with respect to PrhX.

2.2. Reachability-time objective in Stochastic Game Arena

We now define the reachability-time objective for plays of SGAs.

Definition 4. For an SGA G and target set of states F' of G, the (finite-horizon) n-step
reachability-time objective associated with an infinite play p=(so, (a1, 1), $1,- . .) is
given by:

Reach’s (p) = 321, 7(si-1, 04, 51)

where k=min{i € N | s, € F} if s; € F for some j<n € N and k=n otherwise.
Furthermore, the (infinite-horizon) reachability-time objective (with target set ' C S)
associated with an infinite play p is given by:

Reachp(p) = lim,, o, Reach’(p) .

In the definition of the infinite horizon objective the limit always exists, but it can be
infinite. To simplify notation, we often omit the target set F' when it is clear from the
context.

In our games on an SGAs players Min and Max move a token along the edges in
order to minimise and maximise, respectively, the (n-step) reachability-time objective
function. Formally, for an SGA G and an objective Reach™ we define lower and upper
value with respect to Reach™ for G in state s € S by

n &f o ; X n
Valg(s) = sup,es,,., infesy, E5X(Reach™)

Vale(s) £ infpesy,, SUPyex,,,, EXX(Reach™)
respectively. Similarly, for an objective Reach we define the lower and upper values:

def i KX
Valg(s) = sup,ex,,., infuesy,, EfX(Reach)



Valg(s) £ inf,exy, SUD, e 3., B4 X (Reach).

In the cases when the lower and upper values coincide, we denote this value simply as
Valg (s) or Valg(s) and say that the corresponding game is determined. We omit G if
it is clear from the context, e.g. we write simply Val instead of Valg.

For pt € YMin, X € XMax and s € S, let

Valg(s, ) = supx €S nan X' (Reach) and Valg(s,y) & - inf ey, EX "X (Reach) .

We say p is optimal (or e-optimal), if Valg (s, 1)=Valg(s) (or Valg(s, 1) < Valg(s)—¢)
for all s € S. Furthermore, Y is optimal (or e-optimal), if Valg(s, x)=Valg(s) (or
Valg(s,x) = Valc(s)—e) forall s € S. If G is determined, then each player has an
e-optimal strategy for all £>0.

Since we will consider two-player games on SGAs that are not determined, we are
interested in the following problem with respect to the upper value of a game.

Definition 5. Given an SGA G, initial state s € S, reachability-time objective and

value B € Q, the corresponding game reachability-time problem is to decide whether
Val(s) < B.

All results presented in the paper are still valid when replacing the upper value with the
lower value. The following is a well-known result.

Theorem 6 ([34,35]). The reachability-time problem for infinite-horizon objectives
over finite SGAs is in NP N co-NP.

Efficient algorithms exist to solve the problem over finite SGAs, e.g. using value itera-
tion [36l 37].

2.3. Optimality Equations for SGAs

We now introduce optimality equations for reachability objectives over SGAs. For the
remainder of this section we fix an SGA G=(.5, Amin, AMax; PMins PMax, TMin, TMax )
and a target set F' C S.

Definition 7. The Bellman-style equations for n-step reachability time objective are
given as follows: Valn(s):O whenever n=0or s € F, and forn>0and s ¢ F':

n—+1
(

Val' ' (s)= inf sup {7‘(8, a,B) + > esp(s ﬁ)(s')-wn(s')}

DLGAMJU(S) ﬁGAIvI'Lx( )

The correctness of these equations can be easily obtained from the fact that for any
n>0, s & F, path p with last(p)=s and strategies p and y, where a=win(u(p), x(p)),
by definition of E/-X we have:

EXX(Reach:™) = EkeXr (Reachi™)

/ Reach’ztt(p') dPrhe-xe (by definition of expectation)
Pl Q1P Xp ()



_ / p(s, 11p(), Xp(8)) ()
s'eS ﬁEQ“’”"S,’XP“S/ (s")

- (705, 10(5), xp(5)) + Reachip(p) ) Pyl (p))
(by definition of £2#:Xr (s), PrkeXr and Reach?*l)
=T7(5, 11p(8); Xp(5))
+ ) p(s 1p(8), X0 (5))(5) - (/ Reachy:(p) dPriy= " (ﬁ))
peQ“pas”Xpas’ (5/)

s'es
(rearranging)

= 7(s,1(0), x(P)) + > p(s, 11(p), x(p))(s) - ELX,, (Reach})
s’es
(by properties of 11, X, and definition of expectation)

Let us now turn to the equations for infinite-horizon objectives.
Definition 8. A function P : S—RSy is a solution of the optimality equations Optg,
written P |= Optg, if forany s € S:

0 ifselF

inf sup {T(s,a,ﬁ)—l— > p(s,a,ﬁ)(s’)~P(s’)} ifs¢ F

Q€ AMin(5) BE Apntax (s) s'es

P(s)=

and is a solution of the optimality equations Opt o written P %G, ifforany s € S:
0 ifselF
P(s)= sup inf {T(s,a,ﬁ) + > p(s,a,ﬁ)(s’)~P(s’)} ifs ¢ F.

BE Aptax (s) ¥EAMin(S) s'es
To simplify the presentation, from now we will only concentrate on upper value Val.
Analogous results for the lower value follow in a straightforward manner.

Our aim is to utilise the optimality equations for Opt¢ and prove that Val and
lim,, o Val”" are equal, as an initial step towards computing or approximating Val.
Although this equivalence can seem obvious, it is not at all trivial and, due to the
uncountable nature of SGAs, it is not possible to use results such as Kleene fixpoint
theorem out of the box. In fact, in this paper we will only prove the equivalence for
a special case of SGAs (sufficient for our purpose). Nevertheless, the following two
lemmas can be established for SGAs in general.

Lemma 9. For any solution V |= Optg we have Val < V.

PROOF. Consider any £>0 and let p be a strategy for player Min that, for any finite
play p, selects an -2~ (*"(P)+1) optimal action. For an initial state s € S and a finite
play p such that last(p)=s, it follows that:

V(s)+e2 et > gup {T(S,u(p)ﬁ) + Zp(u(p)ﬁ)(S’)-V(S’)} :

BEAMax () s'esS
(1



We will now show that for any path p, counter-strategy x for Max and n € N we have:

EfX(Reach) < V(last(p)) + S int)  e27™. )

m=len(p

We prove (2) by induction on n € N. The case for n=0 follows from Definition 4 and
Definition [8

Now suppose (2) holds for some n € N. Consider any finite path p where last(p) =
s and counter-strategy x for Max. Now, if s € F', then by Definition ] we have:

. n n len _
E/va(ReachFﬂ) =1=V(last(p)) < V(last(p)) + Zm+l16;(p)_~_(lp) 9-m

On the other hand, if s ¢ F and letting a=win(1(p), x(p)), then by Definition [4] and
Definition [8

Y (Reachii"!) = 7(5, ) x(p) + 32 pls, (o), () () Bl (Reacht

n+len(pas’)
< 7(s,1(p), x(p)) + 32 p(s, 1(p), x(p))(5'): (V(S')+ ' Zp 8-2‘m>

s’eS m=len(pas’)+1
(by induction)

N

n+len(p)+1
(s, 1(p), x(p)) + 32 p(s, u(p), x(p))(s'): (V(S’)+ > 6-2"”>

s’eS m=len(p)+2
(by definition of len(-))
(n+1)+len(p)

- (T<s,u<p>,x<p>>+ Zp(s,u(p),x(p))(s/)’V(S’)>+ s g

s’esS m=len(p)+2
(rearranging)
(n+1)+len(p)
< V(s)+e27endt 57 epmm (by (@)
m=len(p)+2
(n+1)+len(p)
= V(last(p)) + > e2™™ (rearranging.)
m=len(p)+1

Since these are all the cases to consider, it follows that @ holds by induction on n.
Letting p = s and taking the limit of n in (2), we have E#X(Reachp) < V(s) + ¢
and, since € and x were arbitrary, it follows that Val(s) < V (s) as required. O

Lemma 10. Val > lim,,_,o Val".

PROOF. The proof follows straightforwardly from the fact that for any n € N and finite
play p we have that Reachr(p) > Reach%(p). O
3. Probabilistic Timed Game Arenas

In this section we introduce Probabilistic Timed Game Arenas (PTGAs) which extend
classical timed automata [2] with discrete distributions and a partition of the actions
between two players Min and Max. However, before we present syntax and semantics
of PTGAs, we need to introduce the concept of clock variables and related notions.

10



3.1. Clocks, Constraints, Regions, and Zones

Clocks. Let C be a finite set of clocks. A clock valuation on C is a function v : C—=R>q
and we write V'(C) (or just V' when C is clear from the context) for the set of clock
valuations. Abusing notation, we also treat a valuation v as a point in (R>)/¢l. Let
0 denote the clock valuation that assigns O to all clocks. If v € V and ¢t € R then

def

we write v+t for the clock valuation defined by (v+t)(¢) = v(c¢)+t for all ¢ € C.
For C' C C, we write v for the valuation where v¢(c) equals 0 if ¢ € C and v(c)
otherwise. For X C V(C), we write X for the smallest closed set in V containing
X. Although clocks are usually allowed to take arbitrary non-negative values, for
notational convenience we assume that there is an upper bound K € N such that for
every clock ¢ € C we have that v(c) < K.

Clock constraints. A clock constraint over C with upper bound K € N is a conjunction
of simple constraints of the form ¢ <1 ¢ or c—c’ 14, where ¢,/ € C, 1 € N, i<K, and
< € {<,>=,<,=2}. Forv € V(C) and K € N, let SCC(v, K) be the set of clock
constraints with upper bound K which hold in v, i.e. those constraints that resolve to
true after substituting each occurrence of a clock x with v(x).

Clock regions. Every clock region is an equivalence class of the indistinguishability-
by-clock-constraints relation, and vice versa. For a given set of clocks C and upper
bound K € N on clock constraints, a clock region is a maximal set (CV(C) such that
SCC(v, K)=SCC(v', K) for all v, € (. For the set of clocks C and upper bound K
we write R(C, K) for the corresponding finite set of clock regions. We write [v] for
the clock region of v. If (=[v], write (¢ for [v¢]; this definition is well-defined, since
for any clock valuations v and v’ if [v]=[1] then [vc]=[v(].

Clock zones. A clock zone is a convex set of clock valuations, which is a union of a
set of clock regions. We write Z(C, K) for the set of clock zones over the set of clocks
C and upper bound K. Observe that a set of clock valuations is a clock zone if and
only if it is definable by a clock constraint. Although more than one clock constraint
can represent the same zone, for any clock zone (, there exists an O(|C|?) algorithm
to compute the (unique) canonical clock constraint of ¢ [38]]. We therefore interchange
the semantic and syntactic interpretation of clock zones.

When the set of clocks and upper bound is clear from the context we write R and
Z for the set of regions and zones respectively.

3.2. Probabilistic Timed Game Arena: Syntax

For the remainder of the paper we fix a positive integer K, and work with K-bounded
clocks and clock constraints.

Definition 11 (Probabilistic Timed Game Arena (PTGA)). A probabilistic timed game
arena is a tuple T=(L,C, Inv, Actyin, ActMax, E, 0) where

e L is a finite set of locations;

o C is a finite set of clocks;
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e [nv : L— Z is an invariant condition,

o Actwin and Actyax are disjoint finite sets of actions, and we use Act for the set
Actyiin U ActMax

e F: LxAct— Z is an action enabling condition;
e §: LxAct—D(2¢ x L) is a probabilistic transition function.

When we consider a PTGA as an input of an algorithm, its size is understood as the
sum of the sizes of encodings of L, C, Inv, Act, E, and §. As usual [28]], we assume
that probabilities are expressed as ratios of two natural numbers, each written in binary,
and zones in the definition of Inv and F are expressed as clock constraints.

A standard probabilistic timed automaton (PTA) is a PTGA where one of Actyin
and Actyax is empty. On the other hand, the standard (non-probabilistic) timed game
arena (timed automaton) is a PTGA (PTA) such that §(¢, a) is a point distribution for
all{ € Land a € Act.

3.3. Probabilistic Timed Game Arena: Semantics

Let T=(L, C, Inv, Actnmin, Actymax, E, 0) be a probabilistic timed game arena. A con-
figuration of a PTGA is a pair (¢, v), where / is a location and v a clock valuation such
that v € Inv(¢). Forany t € R, welet (¢, v)+t equal the configuration (¢, v+t). Ina
configuration (¢, /), a timed action (time-action pair) (¢, a) is available if and only if the
invariant condition Inv(¢) is continuously satisfied while ¢ time units elapse, and a is
enabled (i.e. the enabling condition E (¥, a) is satisfied) after ¢ time units have elapsed.
Furthermore, if the timed action (¢, a) is performed, then the next configuration is de-
termined by the probabilistic transition relation 4, i.e. with probability §[¢, a](C, ¢') the
clocks in C are reset and we move to the location £'.

A game on a PTGA starts in an initial configuration (¢,v) € LxV and Min and
Max construct an infinite play by repeatedly choosing available timed actions (t,,a) €
R>oXxActymin and (ty,b) € R X Actyax proposing L if no timed action is available.
The player responsible for the move is Min if the time delay of Min’s choice is less
than that of Max’s choice or Max chooses L, and otherwise Max is responsible. We
assume the players cannot simultaneously choose L, i.e. that in any configuration there
is at least one timed action available.

Definition 12 (PTGA Semantics). Let T = (L,C, Inv, Actyin, Actyax, E,0) be a
PTGA. The semantics of T is given by the SGA

[[T]]:(S, AMin7 AMaX7 PMin, PMax; Win7 TMin 7-Max)
where

e S C LV is the (possibly uncountable) set of states such that (¢,v) € S if and
only if v € Inv({);

o Anin = Rsox Actyin) U{L} and Apnpax = R0 X Actyax) U{ L} are the sets
of timed actions of players Min and Max;

12
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Figure 1: Example of a probabilistic timed game arena.

e for » € {Min,Max}, ({,v) € S and (t,a) € A, the probabilistic transition
Sunction p, is defined when v+t € Inv({) for all 0<t'<t, v+t € E(¢,a) and
Sforany (¢',V'):

p((6,), (£, ) (¢, 1) = Lccenwroyomw Ol6:al(C, 0);

o for (tg,a) € Ryox Actyin and (tp,b) € RsoX Actrax, we define

Win((tcha), (tb7b)) = { (ta7a) ifta<tb

(ty,b) otherwise.

If one of the arguments to win is |, we define the returning value to be the other
argument.

e the time delay function is given by T,(s, (t,a)) = t for all x € {Min, Max},
s € Sand(t,a) € A, such that p,(s, (t,a)) is defined.

The sum in the definitions of pyrn and paax 1S used to capture the fact that resetting
different subsets of C may result in the same clock valuation (e.g. if all clocks are
initially zero, then we end up with the same valuation, no matter which clocks we
reset). Also, notice that the time delay function of the SGA corresponds to the elapsed
time of each move.

Time Divergence. When modelling real-time systems it is important to restrict atten-
tion to time divergent (or non-Zeno) behaviour. More precisely, one should not con-
sider strategies which lead to behaviour in which time does not advance beyond a cer-
tain point, as this cannot occur in a real system. We achieve this by restricting attention
to structurally non-Zeno PGTAs, these are PGTA where all strategies will yield time-
divergent behaviour by construction. We use the syntactic conditions given in [39] for
PTAs and are derived from those for timed automata [40, |41].

Example 13. Consider the PTGA in Figure [I} we use solid and dashed lines to in-
dicate actions controlled by Min and Max respectively. Considering location {1, the
invariant condition is (0<y<2)A(x<2), actions a and c are enabled when y>1 and,

13



<1

Figure 2: Example demonstrating that PTGAs are not determined. Action names are omitted for brevity.

if a is taken, we move to {5, while if c is taken, with probability 0.2 we move to £y and
reset y, and with probability 0.8 move to (5.

Let us denote clock valuations by tuples where the first (second) coordinate corre-
spond to the clock x (y). Starting in the configuration ({y, (0,0)) and supposing Min’s
strategy is to choose (1.1,b) (i.e., wait 1.1 time units before performing action b) in
location £y and then choose (0.5, a) in location {1, while Max’s strategy in location {1
is to choose (0.2, ¢), one possible play under this strategy pair is

<(€07(070))7 ((1'17b>7J—)7 (fl,(o,l.l)),
((0.5,a), (0.2,0)), (£0,(0.2,0)), ((1.1,b), L), (£2,(0,0)))

which has probability 0.5-0.2-0.5 = 0.05 and time 1.14-0.24+1.1 = 2.4 of reaching the
location {.

3.4. Reachability-time problem over PTGA

We are interested in the reachability-time problem for games over the semantics of a
PTGA T. We assume that the target set is given as a set Ly of locations (the cor-
responding target of the SGA [T], with state space S, is given by F={({,v) € S |
¢ € Lr}). However, the results presented can be easily generalised to target sets of
location-zone pairs.

3.5. Non-determinacy of PTGA with reachability-time objectives

Before proceeding with the definitions that we need to prove the main decidability
result of the paper, we show, through the following counter-example, that PTGAs are
not determined, even when the game contains only non-strict inequalities.

Example 14. Considering the PTGA given in Figurewith target set Lp={{4}, recall
that we use solid and dashed lines to indicate actions controlled by Min and Max
respectively. Constructing the optimality equations Optg for the SGA semantics of this
PTGA, we have, after some simplifications:

P(ly,2) =0
P{l3,z) =1-x
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1 ifx=0
0 otherwise
0 if t=0

1—x otherwise

Plts, ) = {
P(ly,z) = {

and P(£y,0) is equal to the minimum of:

max{0+P(¢3,0),0+P(¢1,0)} 3)

and
inf t+P(ly, 1)), t+P(ly,t }} 4
it Lo { s (P0), s (4P, g

The expression (3) is equal to 1 and corresponds to player Min leaving {y immediately
(when the clock x equals 0). The expression () corresponds to the infimum over leav-
ing £y after a non-zero delay (when the clock x is greater than 0) and is also equal to
1. Combining these results we have that P({y,0)=1.

On the other hand, considering the optimality equations Opt, - the values for the
locations {1, . .., Ly are as above, while the value for P({y,0) equals the maximum of:

0+P(¢,0) and sup {min{ inf (t—|—P(€1,t)), inf (t’_|_P(€2,t’))}}. 5)

0<t<1 t<t’'<1 ot/ <t

The first expression in equals O and corresponds to player Max leaving {y imme-
diately. The second expression in (B)) corresponds to the supremum over leaving £
after a non-zero delay, and is also equal to 0, and therefore it follows that P({y,0)=0.
Hence the game is not determined as the upper and lower values of the game differ in
the state (£, 0).

4. Boundary region abstraction

The region graph [2] is useful for solving time-abstract optimisation problems on timed
automata. The region graph, however, is not suitable for solving competitive optimisa-
tion problems and games on timed automata as it abstracts away the timing information.
The corner-point abstraction [42], which captures digital clock semantics [43]] of timed
automata, is an abstraction of timed automata where the configurations of the system
are restricted to LXN‘C‘, i.e. transitions are allowed only when all clocks have non-
negative integer values. Although this abstraction retains some timing information, it
is not convenient for proof techniques based on dynamic programming, used in this pa-
per. The boundary region abstraction (BRA) [14], a generalisation of the corner-point
abstraction, is better suited for such proof techniques. More precisely, we need to prove
certain properties of values in a PTGA, which we can do only when reasoning about
all the states of the PTGA. In the corner-point abstraction we cannot do this since it
represents only states corresponding to corner points of regions. Here, we generalise
the BRA of [14] to handle PTGAs. First, we require a number of preliminary concepts.
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Timed Successor Regions. Recall that R is the set of clock regions. For {,(’ € R,
we say that ¢’ is in the future of ¢, denoted ¢ —* (', if there exist v € (, v/ € ('
and t € R such that v/ = v+t and say ¢’ is the time successor of ¢ if { # (" and
v+t' € U’ for all /<t and write ¢ — ¢’ to denote this fact. We also use ¢ —7 (' if
there is ¢ such that ¢ — ¢”" —* (’. For regions ¢, ¢’ € R such that { —* ¢’ we write
[¢, (] for the zone U{C” | ¢ —=* ¢" N(" —=* ('}

Intuition for the Boundary Region Abstraction. In our definition of the boundary re-
gion abstraction (BRA) we capture the intuition that, when studying the “optimal”
behaviour of the players, it is sufficient to consider moves that take place near the start
or end of the regions. This allows us to abstract from moves that specify the precise
time, but instead allow the players to say which regions they wish to enter, and then
either say that they want to take the move at the start of the region (inf), or at its end
(sup).

Based on this intuition we define the boundary region abstraction of a probabilistic
game arena as follows.

Definition 15 (Boundary region abstraction (BRA)). For a probabilistic timed game
arena T=(L,C, Inv, Actyin, ActMax, E, 6), the boundary region abstraction of T is
given by the SGA T=(S, AMin, AMax, PMins PMax; WiN, Thin, TMax) Where
e S C LXV XR is the (possibly uncountable) set of states such that (L,v,Q) € S
if and only if { C Inv({) and v € ( (recall that  denotes the closure of ¢);

o Anin = (Actygin xRx{inf, sup}) U {L} is the set of actions of player Min;
o Aniax = (Actyax X Rx{inf, sup}) U {L} is the set of actions of player Max;

e for x € {Min,Max}, § = (¢,1,() € S and o = (a,(”,opt) € A, such that
¢ —=* (", the probabilistic transition function D, is defined if [{, ("] C Inv(¢)
and " C E(¢,a) and for any (¢',v',(') € S:

ﬁ*(év a)((@’, V/’ Cl)) = chcAy’é:ulAg’c{:C 6[6’ a](C’, 6,)
where V"' = opt,, yecn 450 VLS
e win((a, (4, 0pt,), (b, Cp,0pty)) is equal to (a,(y,0pt,) if (i) Co = &b or (ii)
Ca = (b, opt, = inf and opt;, = sup; it is equal to (b, (p, 0pt,,) otherwise;

e for x € {Min, Max}, ({,v,() € S and (aa,Ca,0pt) € A, such that Dy is de-
fined the time delay function is given by T,.(({, v, ), (@ Cas OPt)) = ODt,, 4, -

Given a target set of locations L of T, the corresponding target set of the BRA is
givenby F={({,v,{) € S|l € Lp}.

To simplify notation, for two elements a € /AlMin and b € A\Max we write a<b to
denote that win(a,b)=a. We use analogous notation also for other SGAs. For an

element s=(¢, ) € LxV, we use 3 to denote the element (£, v, [v]) € S.
Although the boundary region abstraction is not a finite SGA, for a fixed initial state
we can restrict attention to a finite SGA, adapting an approach from [44] as follows.
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Proposition 16. Let T be a PTGA and T the corresponding BRA. For any state of 'T',
its reachable sub-graph is finite and constructible in time exponential in the size of T.

PROOF. The most demanding part of the proof is to show that there is a set V' of
valuations that has exponential size and contains v for any state (¢, v, ¢) reachable in
the sub-graph of T.

For r € Ry we write (r) for the fractional part of r, i.e. r—|r|. For a clock
valuation v we define its fractional signature {~§ to be the sequence (fo, f1,. .-, fm)
such that fo=0, f;<f; if i<j, forall i,j < m, and f1, fa,..., f, are all the non-zero
fractional parts of clock values in the clock valuation v. In other words, for every i>1
there is a clock ¢ such that (v(c))=f;, and for every clock ¢ € C there is i<<m such that
(v(e))=F.

Let @ denote addition modulo m. For 0<k<m we define the k-shift of a fractional
signature (fo, f1,..., fm) as the fractional signature (f}, f1,..., f;,) such that for all
0 < i < mwehave f/ = (fier + 1—fi). Note that a k”'-shift (f},..., f/!) of a k’-
shift (f§, ..., f],) of (fo, f1,- .., fm) is an (K’ @ k")-shift of (fo, f1,. .., fm) because
for any ¢ we have:

fi' = fiwpn+1=fin)
= ((fiorror +1=fo ) F 1= feror +1—frr))
= (fis(krar) 1= frror) -

This means that, by successive application of shifts, only m different fractional signa-
tures can be obtained. We further say that a fractional signature (f5, f1,..., f}) is a
subsequence of another fractional signature (fo, f1,. .., fm) if n<m and for all i<n
there exists j<m such that f/=f;.

For any state (¢, v, () of the BRA T, we claim that it is only possible to transition
to states (¢, 1/, ') such that (v') is a subsequence of a k-shift of (v), for some k. To
see that, notice that the v, in the definition of p, (Deﬁnition satisfies that () is a
k-shift of (v) = (fo,... fm) for k chosen so that f,, is the fractional part of clocks that
have integer value in v,. Subsequently resetting clocks gives rise to a subsequence of
a fractional signature, and so (') (for v/ from the defining sum of p, ) is a subsequence
of (V). O

Example 17. Returning to Example (see Figure[l), a sub-graph of BRA reach-
able from ({y,(0.3,0.1),0<y<x<1) for the PTGA of Figure|l|is shown in Figure
The names of the regions correspond to the regions depicted in the bottom right cor-
ner. Edges are labelled (a, (,opt) and the intuitive meaning is to wait until we reach
the lower or upper (depending on opt) boundary of the region. For some regions,
for example (4, the boundaries coincide and we keep this redundancy to simplify the
notation. Considering the region (1, we see that it is determined by the constraints
(I<x<2)A(0<y<1)A(y<xz—1). The bold numbers on edges correspond to the time
delay before the action labelling the edge is taken. Figure[3)includes the actions avail-
able in the initial state and one of the action pairs that are available in the state
(£1,(0,1), (z=0)A(1<y<2)). To simplify the figure, the probabilities that are equal to
0.5 are omitted.
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Figure 3: Sub-graph of the boundary region abstraction for the PTGA of Figure[T} with the region names as
depicted in the bottom right corner.

5. Decidability of the Reachability-Time Problem

In this section we show decidability of the reachability-time problem, which is the main
result of the paper. The result is formalised in the following theorem.

Theorem 18. Let T be a PTGA. The reachability-time problem for infinite-horizon
objectives in T is in NEXPTIMENco-NEXPTIME.

The crucial, and most demanding, step of the proof of Theorem [18|is proving that the
problems on PTGAs can be reduced to problems on BRAs. This fact is formalised in
Theorem [T19] Theorem [I8]then follows straightforwardly from Theorem [I9] Proposi-

tion[T6land Theorem

Theorem 19. Let T be a PTGA andj' the corresponding BRA. The answers to the
reachability-time problems for T and T are the same.

The remainder of this paper is devoted to the proof of Theorem [I9] First, in Sec-
tion[5.1] we introduce quasi-simple functions and prove some of their properties. Then,
in Section we show that values in the games we study can be characterised using
quasi-simple functions, and that this allows us to establish the correspondence between
PTGA and its boundary region abstraction.

For the remainder of this section, unless otherwise specified, we fix a PTGA T =
(L,C, Inv, Actnin, Actyax, E, 0), set of target locations F,, suppose the semantics of
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Figure 4: Example demonstrating optimal strategies are not regionally positional.

T is given by:
[[T]] - (S» AMin7 AMax; PMin, PMax, Win7 TMin» TMax)

with corresponding target set F={(¢,v) € S | { € Fr} and the boundary region
abstraction of T is given by

T = (S) AMin7 AM&X’ Z/)\Mina Z/)\Maxy Win7 7/:I\/[irh ?Max)
with corresponding target set F={(¢,v,() € § | £ € FL}.

5.1. Quasi-simple Functions

To prove properties of controllers for (non-probabilistic) timed systems, Asarin and
Maler [3] introduced simple functions, a finitely representable class of functions with
the property that every decreasing sequence is finite. We define these functions here
and show that they are not sufficient for our purpose.

Definition 20 (Simple Functions). Given a set of valuations XCV, a function f :
X —Rx is simple if there exists e € N and either f(v)=e for all v € X, or there
exists a clock ¢ € C such that f(v)=e—v/(c) for all v € X. Furthermore, a function
I §—>R>0 is regionally simple if f(¢,-, () is simple forall ¢ € L and { € R.

For timed games, Asarin and Maler showed that upper values for n-step reachability-
time objectives are regionally simple, and because the fixpoint is reached for some 7 the
upper value for reachability-time objective is regionally simple. Also, using the proper-
ties of simple functions, [[14]] shows that, for a non-probabilistic game reachability-time
objectives, the optimal strategies are regionally positional, i.e., in every state of a region
the strategy chooses the same action. Unfortunately, in the case of PTGAs, applying the
value improvement function does not necessarily preserve regional-simplicity. More-
over, as the example below demonstrates, neither is the value of the game necessarily
regionally simple nor optimal strategies regionally positional.

Example 21. Consider the one-player PTGA shown in Figure Observe that, for
every state (Lo, v) in the region ({y,0<x<1), the optimal expected time to reach {5
equals

min {inf;>o{t + 0.5-1 + 0.5-0}, 1—v(z)} = min{0.5, 1—v(z)}.
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Hence, the values in PTGA with reachability-time objectives may not be regionally
simple. Moreover, the optimal strategy is not regionally positional, since if v(x)<0.5
then the optimal strategy is to take action a immediately, while otherwise the optimal
strategy is to wait until v(x)=1 and then take action b.

Due to these results it is not possible to work with simple functions. Our proof instead
relies on regional non-expansiveness of value functions. Given X C V, a function
[+ X—=RS is non-expansive if for all x,y € X we have |f(z)—f(y)| < [z—y|.
A function f : §—>R°° is regionally non-expansive if f(¢,-, () is non-expansive for
any ¢ and ¢, and s1m11arly any f : S—RS is regionally non-expansive if f (¢,-) is
non-expansive when its domain is restricted to a single region.

The proof direction that we take requires us to establish that lim,, VaI is non-
expansive. To do this, we will show that for each n € N the function Val" is non-
expansive. However, a direct proof by induction would fail and instead we are required
to prove a stronger claim about the functions Val”. To do this, we first introduce quasi-
simple functions.

Definition 22 (Quasi-Simple Functions). Ler X C V be a set of clock valuations.
The class of quasi-simple functions is built by first defining every simple function to be
quasi-simple, and then inductively by stipulating that convex combination, maximum
and minimum of finitely many quasi-simple functions are quasi-simple.

A function f : S —R is regionally quasi-simple if f(¢, -, () is quasi-simple for all
¢ € Land ¢ € R, and any f : S—R is regionally quasi-simple if f(/,-) is quasi-
simple when its domain is restricted to a single region. R

We will later show that functions Valjrj : S—Rxg and Vals : S5Rx forn € N
are regionally quasi-simple. From this using the lemma below we can then demonstrate
that these functions are non-expansive.

Lemma 23. Every quasi-simple function is non-expansive.

PROOF. Consider any quasi-simple function f : X —RS;,. We will prove by induction
on the structure of f (see Definition that for any 14, € X we have |f(v1) —
f)] <l — 1.

e If f is a simple function, then either f is a constant, and hence:
| (1) = f(r2)| = 0 < |1 — v
or f = e — v(c) for some clock ¢, in which case:
[f (1) = f(v2)| = |va(c) — i) < vz — 11
as required.

e If f is a convex combination p1, ..., p, of quasi-simple functions fi,..., fn,
then:

> ipi fi(v) = Yoy pi fi(ve)| < 10y pis(fi(vn) — fi(v2))]
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N

> oiapit [y — va| (by induction)
= |11 — 1o (since we are considering a convex combination)

as required.

o If f is the maximum of two quasi-simple functions f; and f>, then without loss
of generality we suppose f1(v1) = fa(v1). In the case when f1(v2) > fa(v2)
we have

|max{ fi1(v1), fo(v1)} — max{fi(v2), fo(v2)}| < |fi(v1) = fi(v2)] < [v1 — 11|

since f; is non-expansive. On the other hand, in the case when f1(v2) < fa(12):

[max{ fi(v1), fo(v1)} — max{fi(v2), fa(v2)}| < [fi(v1) — fa(v2)] .

Now either f1(v1) > f2(12), and therefore we have:

|f1(v1) = fa(ro)| < [fi(v1) = fr(v2)] < [v1 — 12|

since f; is non-expansive, or f1(11) < fa(v2) in which case:

If1(1) = fa(vo)| < [ fa(v1) — fa(v2)] < [v1 — 12|

since fo is non-expansive. Since these are all the cases to consider we have f is
non-expansive as required.

e If f is minimum of two quasi-simple functions the proof follows similarly to the
case when f is the maximum of two quasi-simple functions.

Since these are the only cases to consider the proof is complete. O

In the proofs below we will make use of several technical properties of quasi-simple
functions. First, however, we require an alternative representation of quasi-simple
functions in terms of parse trees.

Let Y be the set of all parse trees whose leaves are simple functions and whose
nodes are the operations: min, max and convex combination. Clearly, every tree A € T
corresponds to a unique quasi-simple function which we will call ¢gs(A). Conversely,
every quasi-simple function corresponds to infinitely many trees from Y. The definition
below gives us a unique representative.

Definition 24. Let the rank of a quasi-simple function f : X =R, denoted rank(f),
be the smallest k such that there is a tree A € Y of height k such that gs(A) = f. For
any quasi-simple function f : X =R, we define a unique representative parse tree
Ay by induction on the rank of f.

o Ifrank(f) = O, then let A to be any tree with height 0 such that qs(Ay) = f.

o If rank(f) = k+1 for some k € N, there must be an operation op (either min,
max or convex combination) and integer n such that f is obtained by taking the
op of the quasi-simple functions f1,..., fn, each of which has rank at most k.
Therefore, by induction we have representatives Ay, ,..., Ay, for fi,..., fn.
Let Ay be the tree with root op and subtrees Ay, ,...,A¢ . Clearly, by con-
struction we have qs(Ay) = f.
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The first technical property of quasi-simple functions will allow us to establish that
when we take a delay so that a boundary of a region is reached, quasi-simplicity is
preserved.

Lemma 25. Let f : X =R be a quasi-simple function, c a clock and i an integer
such that v(c)>i for all v € X. If felopse . X—RSy, is the function where for any
v € X we have f9%¢(v) = t,+f(v+t,) and t, = v(c)—i, then %% is quasi-
simple.

PROOF. Consider any quasi-simple function f : X =R} and let Ay be its represen-
tative parse tree constructed using Definition Let A}”Od be the modified parse tree
where any leaf labeled with a constant simple function e is replaced by the non-constant
simple function ¢’ — v(c), where ¢’ = e+i.

We will prove that felarse — qs(A?"d), which demonstrates that f¢/*Ps¢ is quasi-
simple as required. The proof is by induction on the rank of f. If rank(f) = 0, then
there are two cases to consider.

o If Ay is a leaf labelled with a constant simple function which for any v € X
returns e for some e € N, then for any v € X:

fempse(y) =t,+f(v+t,)

=t,+e (by definition of Ay)
=i—v(c)+e (by definition of ¢,))
=e'—v(c) (by definition of €)

which equals gs(A"*%)(v) as required.

o If Ay is a leaf labelled with a simple function which for any v € X returns
e—v(c’) for some e € N and clock ¢/, then we have for any v € X:

£ () = b+ (04,)
=t,+e—(v(c)+t,) (by definition of A )
=e—v(c) (rearranging)

which again equals gs(A7"*%)(v) as required.

For the inductive step, suppose rank(f) = k+1 for some k € N and for any quasi-
simple function of rank less than or equal to & the result holds. Since rank(f) = k+1
there must be an operation op (either min, max or convex combination) and integer n
such that f is obtained by taking the op of some quasi-simple functions f1,..., f,,
each of which has rank at most k. Now, for any v € X:

felapse(y) _ tquf(I/thy)

=t,top(fi(v+t,),. .., fa(v+t))) (by definition of f)
= op(tuy+fi(v+ty), ..., tu+fu(v+t,)) (rearranging)
= op(fE1%*C(v), ..., fE9P3e (1)) (by definition of f*P*° for 1<i<n)
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= op(qs(A}’i"d)(V), ce qs(A}’i"d)(V)) (by the inductive hypothesis)

= gs(A7)(v) (by definition of A%
This completes the induction step, and hence the lemma holds. (]

The next lemma states that resetting clocks preserves quasi-simplicity.

Lemma 26. For any region ( and quasi-simple function g : (¢ —Ry, the function
g7t 1 (=R defined by g"**' (v) = g(vc) is quasi-simple.

PROOF. For a quasi-simple function f, let A}”"d be the modified parse tree of Ay
where a leaf labelled with a non-constant simple function which for any v € (¢ returns
e—v(c) for some integer e and clock ¢ € C is replaced with a leaf labelled by the
constant function e. The proof follows by showing f7¢5¢* = qs(A}’“’d) for all quasi-
simple functions f. This proof is by induction on the rank of f.

If rank(f) = 0, then Ay is a leaf and there are three cases to consider.

o If Ay is a leaf labelled with a constant simple function which for any v € (¢
returns e for some e € N, then for any v € ( by construction:

frectv) = flve)
=e (by definition of Ay)
= qs(A}de) (by construction)

e If Ay is a leaf labelled with a simple function which for any v € (¢ returns
e—v(c’) for some e € N and clock ¢ & C, then for any v € (:

frect(v) = fve)

=e—vo(c) (by definition of Ay)
= e—v(c) (since ¢ € C)
= QS(A?Od) (by construction)

o If Ay is a leaf labelled with a simple function which for any v € (¢ returns
e—v(c) for some e € N and clock ¢ € C, then we have for any v € (:

frectv) = fve)

=e—vc(c) (by definition of Ay)
=e (since c € C)
= qs(A}’“’d) (by construction)

For the inductive step, suppose rank(f) = k+1 for some k£ € N and for any quasi-
simple function of rank less than or equal to & the result holds. Since rank(f) = k+1
there must be an operation op (either min, max and convex combination) and integer
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n such that f is obtained by taking the op of some quasi-simple functions f1,..., fy,
each of which has rank at most k. Therefore for any v € ( by construction:

frect(v) = fve)

= op(fi(vc), ..., falvec)) (definition of f)
= op(f7°t(v), ..., freset(v)) (by definition of f7**¢* for 1<i<n)
= op(gs( }’f”d)(y), ey qs(A}Zf’d)(y)) (by the inductive hypothesis)
= qs(A?’Od)(V) (by definition of Agwd)
which completes the proof. (]

The following technical lemma will allow us to establish that, assuming quasi-simplicity
in successor states, the players’ optimal behaviour is to pick delays so that boundaries
of regions are reached.

Lemma 27. Let f : X =R, be a quasi-simple function. Forany x € X andt € Rxq
such that x+t € X:

® SUPyypprrex \ETf(a+t)} = t+f(z+t);
o infysinerpvex {t'+flat+t')} = t+f(z+t).

PROOF. Consider any quasi-simple function f : X—Rj and clock z. It suffices to
show that the function ¢ — ¢+ f(z+t) is increasing. Now for any ¢1,t; € Rxq such
that t; < t9 and x+t1, x+t9 € X, we have:

tot+f(z+ta) = t1+f(z+t1)+((ta—t1)+(f (z+t2)— f(z+t1)))
> ti+f(z+ty)

where the inequality follows since the term (to—t1)+(f(z+t2)—f(z+¢1)) is non-
negative by the non-expansiveness of f (see Lemma [23)). U

5.2. Establishing correspondence of PTGA and boundary region abstraction

Having introduced quasi-simple functions and their properties, we will now show how
they relate to PTGAs and how they can be utilised to finish the proof of Theorem
The proof is notationally heavy, and to alleviate some of the technical notation we first
introduce a number of functions (and properties of these functions) that will allow us
to abbreviate some of the notation. Intuitively, these functions are counterparts to Val
functions that in addition to an initial state also take the first action to be taken.

Definition 28. Let n € N, ¢ € L and ( C Inv({). For » € {Min,Max} and
(a,¢',opt) € A, (£,C), let W$H((€,-,C),(a,(’,op‘c)) : (—Rxq be the function
where for any v € ( we have W$+l((€, v, (), (a,¢’, opt)) equal

Optu+t€<’ {t+ Z ﬁ*(g,l/,C),(Q,CI,Opt))(E,ﬂ,CN) Wzli(gai),g)} .

(,5,0)eS
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Furthermore, for v € Inv({) and (t,a) € Anfin U Anax such that v+t € C let:

Valir (o), (ha)) =t+ 3 6[6,a](C,0) - Valfry (', (v+t)c)

(Ce)e2¢x L
WZI;((& V)7(taa)7§) =t+ E 6[&&](076/) 'W$(£/7(V+t)0a<0)'
(Ce")e2¢x L

Intuitively, V4aI$+1((£, v,(), (a,¢’,opt)) corresponds to the optimal value in (¢, v, ()
when the length of the horizon is n+1 and the first action performed is fixed to be
(a, (', opt). Similarly, WELTT ((¢,v), (t,a)) corresponds to the optimal value in (¢, v/)
for the length of the horizon n+1 when the first action performed is (¢, a). The defini-
tion of ﬁ:;rzl ((¢,v),(t,a),() gives an auxiliary function which combines the values

of [T] and T. Intuitively, it corresponds to taking a fixed action in [T], and then trans-
ferring to T for n more steps.

Next we show that, within a region, the values in the BRA T are quasi-simple
when we restrict to a finite horizon reachability objectives. To simplify the notation,
we assume that in any state player Min can pick at least one action, and that, for each
action a player Min can select, there exists an action b player Max can select that is
preferred, i.e. b=win(a,b), and also an action b that is not preferred, i.e. a=win(a, b)
(in addition, there can be actions b not satisfying any of the two conditions). We refer
to this assumption as choice freedom.

Lemma 29. Assume T is choice-free. Foranyn € Nand s € S:

(t,a)€ Anmin (t',b) € Antax (s)AL' <t

WHTH (S) = inf ) max {\Lﬁlf'r]] (5, (t, a’))y sup WETH (57 (t/’ b))}
~ -~ —n+1,_ 1
Furthermore, for any n € N and s € S we have that Valg ~ (5) equal'

min Vali ™ (3, (a, ¢, inf)),
(a,¢,inf) € Anmin (5)

max  Valf' (5,(b,(sup)),  max  Valf' (3 (b,(,inf))
(b,¢" ,sup) € AMax (3) (b,¢,inf) € Amax (5)
(b,¢' ;sup)<(a,¢,inf)

PROOF. For Wfﬁl(s), the proof follows easily using Deﬁnition choice-freedom,

. . Tt~ . - .
and properties of win. For Va|$ (5) we use the definition of win together with the fact

that W$H(§, (a,¢,inf)) < W$+1(§, (a,¢,sup)) for all a € Act. The latter follows
from Definition [T3] O

From now on, we will assume T is choice-free. Note that this is purely a notational
advantage, which will allow us to use Lemma The proofs we give can be easily

Recall that a<b denotes the fact that v;ﬁ‘l(a, b)=a.
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extended to non-choice-free T by omitting an appropriate part of the equations. For
example, if Actyin(s)=2, then the first equation in the Lemma[29|reduces to

o+l N
VaI[[T]] ( ) sup Val[[-r]] (S, (t/, b)) .
(t",b) € Anax(s)

We now proceed with the following lemma which states that the n-step value functions
on a BRA are regionally quasi-simple.

Lemma 30. Foranyn € N, £ € L and ( € R such that ( C Inv({), the function
Va|$(€, -, C) : (—=Rx is quasi-simple.

PROOF. Consider any ¢ € L and ¢ € R such that { C Inv(¢). We proceed by
induction on n € N. For n=0, by Definition [7| we have that VT;\I%(& -,¢) is constant
and equals 0, and hence quasi-simple.

Now suppose the claim holds forn € N. If £ € L, then Wnﬂ (¢, -,¢) is constant
and equals 0, and hence quasi-simple. It therefore remains to con51der the case when
t ¢ Lp. By Deﬁmtlonfor* € {Min, Max} we have 4, ((,v,() = A, (¢,1/,()
for all v,v' € (, hence we use A, (¢,¢) to denote A, (¢,v,¢) for any v € ¢ and
* € {Mln7 Max}.

Using induction, Lemma[26] Lemma 25]and the quasi-simplicity of a convex com-
bination of quasi-simple functions, it follows that the function W%H((& Q) a) :
(—Rxq given in Definition 28| is quasi-simple for any x € {Min, Max} and a €

A(L,0). _
Now, by Deﬁnition forany v € (:

Vali '(6r,0) = min max  {7((61,(),a,8)
a€Anmin (£,¢) BEAMax (£,C)
+ > Bl(6rQ), e, B)(, ,§)~Vaﬂ$<&ﬂ,§>}
(0,5,0)eS

= min  max {W%+l((€, v, (), ), max W?—l((ﬁ, v, C),ﬂ)}

@€ Antin (£,0) BEAnax (£,0)AB<La

by Deﬁnition and Definition [28] Hence, Vial$Jrl (¢,+,¢) : (—Rxq equals an expres-
sion which takes the maxima and minima of quasi-simple functions, and therefore by
Definition [22)is also quasi-simple. O

The following lemma demonstrates that, for finite-horizon reachability-time objective,
the values in the BRA and PTGA coincide.

Lemma 31. For any n € Nand s € S we have WET]](S) = Val5(3), and hence

W?T]] (€,-) : (=R is regionally quasi-simple for any { € L and { € R such that
¢ C Inv(¢).

26



PROOF. Consider any s=(¢,v) € S. We proceed by induction on n € N. If n=0, then
by Deﬁnitionboth WETH (s) and WE)T— (5) equal 0, and hence the result holds.
Now assume that the lemma holds for some n € N. If / € L then

Valjr) (s) = Valg " (3) = 0

and the result follows. It therefore remains to consider the case when ¢ ¢ Lp. Using
Lemma 29 we have:

Valf[ﬁl(s) = inf  max Vial%-al(s,(t,a)% sup Vialf[ﬁl(&(t’,b)) . (6)
(t,a)€EAmin (s (' b)€ Antax(5)
t'<t

Let Af/[tax(s) = {(t',b) € Amax(s) | t'<t} be the set of actions available to Player
Max in s with delay up to ¢, let R(v,t) = [[v], [v+t]] be the regions obtainable from
v by delaying at most ¢ time units, and Actyax(€,C) = {b € Actmax | ¢ C E(4,0)}
be the set of actions of T available when in location ¢ and region (. It follows by
Definition [[2] that:

AN = | {(,b) € RuoxAct(£,Q) | v+t € AL} (7)
CER(v,t)

Furthermore, letting R(v) = {¢ € R | { C Inv(¢) A [v] =* ¢} be the set of regions
obtainable from v by some delay and Actygin (¢, () = {a € Actyin | ¢ € E(¢,a)} the
set of actions of player Min available in location £ and region ¢, again by Definition[12]
we have:

AMin(S) = U {(t,a) S R)OXACtMin(E,C) | v+t € C} ®)
CER(V)

Now, by Deﬁnition letting t:r’c/ = sup{t’ | v+t' € ('} we have:

sup  Valjr)' (s, (¢',0)

<t
(t',b) EAMaX

= sup {t’ + Z NIA(CRAE WETH , (V—i—t')c)}
(.

<t
(t",0) €Ay ox )E2C X L

= sup {t’ + Z 36, 0](C, ) ~ﬁ$(€’, (v+t') e, [(V—i-t’)c])}
(b)) €A, (Ce)e2¢x L
(by induction)

= max sup t'+ > 8[b)(C ) Vali(l, (v+t) e, C6)
CER(vY)  t'<tAvtt e’ eac
be Actyrax (£,¢)) (C)e2¢xL

(by @)
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C'ER(vt)
b€ Actmax (£,¢")

= max { min{¢, t:('}+
> deb)(C, ) - ValR (¢, (v+min{t, ] - }e, g’c)}
(Ce)e28x L
(since Vialg is quasi-simple and by Lemma
= max Vialz,:;l (s, (min{t, ¢} . },0),¢) (by Definition [28)

¢'eER(v,t)
b€ Actmax (£,¢")

Now substituting this into (6], it follows that Wfﬁl (s) equals
= inf  max WEﬁl(s, (t,a)), max VaI":i—;(s7 (min{t, ¢} . },b),¢")

(t,a) € Anin (s) ¢’ eR(v,t)
b€ Actmax (£,¢")

. . o+l Tontl .
= min inf max{ Valy. s,(t,a)), max Val_ . (s,(min{t,t} . },b),¢’
min i (k). max VAL (s Gmingt, ) 1.).C)
a€Amin (¢,6) b€ Actmax (£,¢")

(by @
For any ( € R(v) and (t,a) € Amin (¢, ¢) the expression

n

o+l .
CER(v t)/\rlgleafctM e,¢") Valmiz (87 (mln{ta t:r’c’}a b)7 CI)

equals the maximum of

ot —Fn+1
max Va|n S t+ , b / and max Val "7 (s. (min t,t+ 7b
e Valy (s (£)0,0).¢) and | max | Valg, (s, (min{t,£}.b).C)
beActMax(e,C/)

and both of these expressions decrease as ¢ decreases. Moreover, letting ¢,, - = inf {t']
v+t' € ¢} and using Lemma[27] Definition[28] and induction, we have:

. —n+1 —n—+1 _
£ Val't (s, (ta)) = Val" (s, (t5 ., a),
VA (s, (1) = VAL s, (1, 0),)
Consequently, it follows that Val[ﬁ1 (s) equals:
. —n—+1 _ —n+1
min  max<{ Val,.. (s, (t,,a),(), max  Val,.. (s, (t5.,b),(),
CER(v) { (8 (- @): <) CERWANC (8 (f,¢:6). €)

a€Amin (£,6) bE Actyrax (£,¢")

—n-+1

max Valmim (57 (t;(ab)7C)}

beActnax(£,€)
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By definition of ¢, - and tIC’ and Definition 28| we have:

Vali, (s, (t)¢,a),¢) = Valz 7 (. (a, ¢, inf))

Val,\, (s, (t,a),¢) = Vals " (5, (a, , sup))

and hence, using definition of R (v, t), WETT (s) equals:

min  {Valf' (3 (a,¢, inf)),
(a,¢,inf) € Anin (5)

max  Vals (3 (b,¢';sup)),  max  Vals (3, (b,C,inf))
(b1<,1sup)€AMaX(§) (b,¢,inf) € Anax (5)
(b,¢';sup)<(a,¢,inf)
. Tt~ .
which from Lemmaequals Valz "~ (8), completing the proof. O

In the rest of this subsection we use the lemmas to prove properties of the infinite-
horizon setting.

Lemma 32. The function lim,, _, o Vialf[lT]] is regionally non-expansive.

PROOF. The proof follows from Lemma [3T]and the fact that a limit of non-expansive
functions is a non-expansive function. (]

Lemma 33. The function lim,, WET]] is a solution of the optimality equations
PROOF. LetI' = lim,, o VT\I%H and for any (£,v) € S and (t,a) € Amin((¢,V)) let:
L((tv),(ta) =t+ > 8[6a)(C.0) T, (v+t)e).

(C0)e2¢ x L

By Definition 8]and by using similar arguments as those from the proof of Lemma[29]
to prove the result it is sufficient to demonstrate that for any s € S

I'(s) = inf  max {1"(57 (t,a)), sup [(s, (t, b))} )

(t,a)EAmin(s) (,b) € Antax (8) A <t

Showing the left hand side is less than or equal to the right hand side follows eas-
ily from the monotonicity of the operator defining Optm, i.e. of the operator F :
(S—RZH)—(S—RZ,) given by

F(y)(s) = inf max {v(s, (t,a)), sup v(s, (¢, b))}

(t,a)€Amin(s) (t',b) € Antax (s)AE <t
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and from the Knaster-Tarski fixpoint theorem which implies that for all ordinals 0; <
02 we have F°1(0) < F°2(0) where 0 is the lowest element in the complete lattice of
functions S—RS, ordered with respect to <.

We complete the proof of (9) by showing the left hand side is greater than or equal
to the right hand side. Consider any s € S. If I'(s) is infinite, then the result follows.
On the other hand, if I'(s) is finite, it is sufficient to show that for any £>0:

[(s)+e> inf  max< (s, (¢ a)), sup [(s, (t',0)) ¢ .
(t,a)€AMin(s) (t',b) € Antax (8)AE <t

We begin by selecting a finite sequence t1, ..., t,, of positive reals such that for any
possible delay ¢ in s=(¢, v) there exists t; (denoted nr(t)) with [v+t] = [v+nr(t)]
and [t—nr(t)] < /6. Note that such a sequence 1, . .., %, can always be selected as
the clock values are bounded. By construction we have for any ¢ € R>o and C' C C:

[(v+t)—(v+nr(t))| <e/6 and |(v+t)c—(v+nr(t))c| <e/6 (10)
Now for any (t,a) € Anmin U Amax We have:

|F(S7 (t,a))—T(s, (nr(t), a))|

<ft=nr)+ Y [6a)(C ) [D(W, (v+t)e) =T (', (v+nr(t))c)]
(C)e2¢xL

<ft=nr)+ Y 0al(C ) - [(vHt)e—(vnr(t))o|
(C0)e28 x L
(since I is regionally non-expansive (Lemma [32)))

<lt=nr@®)|+ Y. 6[tal(C,0)-£/6 (by (T0))

(C,e1)e2¢ X L
< |t—nr(t)| +¢/6 (since 6[¢, a](C, ') is a distribution)
<e/6+¢e/6 (by construction of nr(t))
=¢/3. (11

By similar arguments (using Lemma [23] and Lemma [31)) we can show that for any
n € N: o o
‘Val[m] (s, (t,a))—=Val (s, (nr(?), a))‘ <eg/3 (12)

Since I' = lim,, o WELT]], for any 1<<i<<m there exists N; € N such that:
D, (r+)0) VAl (¢, (v+ti)e) | < =/3
forall ¢ € L, C C C and n>N;. Setting N = 1+ maxy <i<m N, it follows that:
‘F(s, (nr(t), ) —Valgry (s, (nr(t), a))‘ <e/3 (13)
for all (t,a) € Amin U Apmax and n>N. Now using we have for any n>N:

[(s, (t,a)) < T(s,(nr(t),a)) +¢/3
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Valjr(s, (nr(t), @) + /3 + /3 (by (T3))
)+¢e/3+2e/3 (by (12))
) +e€ (14)
Finally, for any n> N we have:

inf )max {F(s, (t,a)), sup L(s, (¢, b))}

(t,a)€Amin (s (t',b) € Antax (s)AL' <t

s inf max { Valpry(s, (f,a)) +2,  sup Valpr (s, (¢, b)) + 8}
(t,a)€Anin(s) [Tl ) e [[T]]( (t',b))
t'<t

(by (14))

= inf o) max {WET]] (s, (t,a)), sup WET]] (s, (t, b))} +e

(t,a)€Anmin (t/,b) E AMax (S)AL'E
(rearranging)
= WET]] (s)+e¢ (by Lemma[29)
<I(s)+e (since Valfry(s) < Wﬁ]rl for all m)
which completes the proof. O

We are now a few steps away from concluding the proof of the main result of the paper.

Theorem 34. Vfé"[[ﬂ] =lim,, TMETH‘

PROOF. Using Lemma (10| it follows that Valjrj > lim, o0 Wfﬂ]. On the other
hand, Lemma states that lim,, o WET]] is a solution of the equations OT’tm and
Lemmal?]states that W[[T]] < V for any solution V' of the equations int[[T]]' Therefore,
we have Valjrp < limy, VaIET]], which completes the proof. O

The above theorem together with Lemma 31| tells us that, to compute Valpry(s), it is

sufficient to compute lim,, ;o Val7(s), which is equal to Val=(s) using results similar
to [36l 37]. This completes the proof of Theorem[I9}

6. Conclusions

In this paper we introduced the reachability-time problem for PTGAs and showed that
it is decidable and in NEXPTIME N co-NEXPTIME. Our proof relies on an analysis of
step-bounded value functions, showing that they are quasi-simple and non-expansive
when infinite horizon is taken. This allows us to reduce the problem to the reachability-
time problem on a finite abstraction. As opposed to the preliminary version of the work
presented in [30], the reduction works for an unrestricted class of PTGAs.
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Although the computational complexity of solving games on timed automata is
high, UPPAAL Tiga [6] is able to solve practical reachability and safety properties
for timed games by using efficient symbolic zone-based algorithms [7, [11]. A natu-
ral future direction is to investigate the possibility of devising similar algorithms for
probabilistic timed games.

On the theoretical level, we plan to study if our approach can be utilised for ex-
tensions of reachability-time objectives by considering an appropriate class of reward-
based properties.
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