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ABSTRACT

In many real-time embedded systems, the choice of values
for the timing delays can crucially affect the safety or quan-
titative characteristics of their execution. We propose a pa-
rameter synthesis algorithm that finds optimal timing delays
guaranteeing that the system satisfies a given quantitative
property. As a modelling framework we consider networks of
Timed Input/Output Automata (TIOA) with priorities and
parametric guards. To express system properties we extend
Metric Temporal Logic (MTL) with counting formulas. We
implement the algorithm using constraint solving and Monte
Carlo sampling, and demonstrate the feasibility of our ap-
proach on a simplified model of a pacemaker. We are able to
synthesise timing delays that ensure with high probability
that energy usage is minimised, while maintaining the basic
safety property of the pacemaker.
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1. INTRODUCTION

Model-based design of safety-critical real-time embedded
systems, such as implantable medical devices and automo-
tive airbag controllers, increasingly often relies on automated
verification in order to establish that certain key require-
ments hold for the system model. In many cases, the choice
of the timing delays can crucially affect the safety of the
system or its quantitative characteristics such as energy con-
sumption. Parametric timed automata [3], where parame-
ters instead of constants can be used to specify such delays,
have been proposed to bypass the need to perform the ver-
ification multiple times, for different constant delays. In-
stead, the parameter synthesis problem [10] asks whether
there exists a parameter valuation which guarantees the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions @acm.org.
ESWEEK’14 October 12 - 17 2014, New Delhi, India

Copyright 2014 ACM 978-1-4503-3052-7/14/10 ...$15.00
http://dx.doi.org/10.1145/2656045.2656073 .

satisfaction of the requirement. The parameter synthesis
problem has been studied in different forms for timed au-
tomata models (see Related Work below), e.g. for reach-
ability and branching-time logic specifications, but suffers
from undecidability when parameters are real-valued. Most
recent work has focused on identifying subclasses of models
or parameter domains where the problem is tractable [18].

In this paper, we target embedded software modelled with
parametric delays and develop algorithms to automatically
synthesise optimal, robust values to guarantee the satisfac-
tion of a range of quantitative properties. To this end, we
extend the networks of timed I/O automata (TIOA) that
communicate by matching input and output actions with
parametric guards and priorities (the latter to determinise
the system). As a property specification notation, we pro-
pose Counting Metric Temporal Logic (CMTL), an exten-
sion of the Metric Temporal Logic (MTL) with counting,
which can express, e.g., constraints on the number of events
occurring in an interval of time and the associated energy
consumption. To address the potential undecidability, we
work with finite path lengths and discretise the parameter
space. Our main contribution is a solution to the optimal pa-
rameter synthesis problem for TIOA models with respect to
a given CMTL formula and a quantitative objective func-
tion. We implement the algorithms in Python using con-
straint solving and Monte Carlo sampling.

We then demonstrate the usefulness of the techniques on
an implantable cardiac pacemaker case study, which has
been modelled in [15] using timed automata, where we auto-
matically synthesise values for certain critical timing delays
for the pacemaker. Counting is necessary in order to ex-
press the fundamental safety property of a pacemaker, i.e.
that it maintains a regular rhythm of 60-120 heart beats per
minute. Such a property cannot be expressed in MTL since
in |22} 13] the authors show that MTL is unable to express
counting. We derive a composition of the pacemaker model
with the heart model and synthesise the time that the pace-
maker waits before delivering a pace (TLRI—TAVI according
to Boston Scientific specification [1]). This value is critical
to ensure the pacemaker safety (i.e. waiting too long can
cause patient discomfort or even death), while at the same
time it also affects the energy efficiency of the pacemaker
(i.e. pacing too often will consume more energy). We were
additionally able to confirm that the parameter values that
our synthesis algorithm yields are in line with those recom-
mended by pacemaker manufacturers.

Contributions.



The contributions of this paper can be summarised as fol-
lows:

e We generalise the timed I/O automata model of [19)
with priorities and parametric guards.

e We propose CMTL, an extension of the linear-time
logic MTL with counting.

e We formulate a parameter synthesis algorithm which
finds all parameter valuations such that, when instan-
tiated, the network of TIOAs satisfies a given CMTL
property. Instead of enumerating all possible param-
eter valuations, we generate symbolic constraints that
satisfy the property, and then find an optimal, robust
parameter valuation with respect to an objective func-
tion.

e We demonstrate the usefulness of the methods on a
pacemaker case study.

Related work.

In [14], the authors study the decidability problem for
parametric timed automata. They consider the special case
of L/U automata for which they show that the emptiness
problem is decidable. [4, |5] describe an approach to derive
the constraints on parameters such that the behaviours of
the timed automata are time-abstract equivalent, starting
from a reference valuation rather than a logic formula. In
[10], undecidability for parametric reachability problem is
proved. The parameter synthesis problem for branching-
time logic TCTL is studied in [8], where parameters are
given both in the model and the formula. The authors show
the decidability for a fragment of TCTL where equality is
not allowed. In [20], the authors apply the bounded model
checking procedure to solve the synthesis problem for the
existential fragment of CTL without the next operator. In
[7], the authors show PSPACE-completeness of the empti-
ness problem in parametric L/U timed automata for prop-
erties on infinite runs, while [18] consider the same class
of automata for TCTL properties, also showing PSPACE-
completeness. A parametric extension of timed I/O au-
tomata is given in [23], where it is shown how to construct
an implementation of the specification that is robust under
a given timed perturbation. In [17] the authors propose a
method to synthesise optimal values of timing parameters
for probabilistic timed automata given a reachability prop-
erty.

In this paper we present algorithms for parameter syn-
thesis from specifications given in a generalisation of the
linear-time logic MTL, rather than a branching-time logic
or a reference valuation. Our results are akin to bounded
model checking, since MTL formulas impose time bounds,
and share similarities with the work of [4]. We also consider
a generalisation of timed automata networks with priority,
which are more expressive than L/U timed automata.

2. PROBLEM FORMULATION

Consider the TIOAs A; and Az in Fig. The automata
A; and A form a network and they communicate with each
other by means of actions Act = {VP,AP,AS}. We distin-
guish input (marked with ?) and output actions (marked
with ). For instance, when automaton A; takes a transition

t>=T, APl, t:=0  y>=J, VP!, y:=0

(a) As (b) Az

Figure 1: Example network A with two components.

and outputs the action VP!, the automaton .A; synchronises
by taking the corresponding transition with the input ac-
tion VP?. We use numbers 1,...,7 to label the transitions
and Roman numbers for the priorities with the lowest num-
ber denoting the highest priority. In the initial state (g, z),
both automata start three clocks ¢, x and y. There are two
ways to take a transition. First, when an input action is
enabled. Second, when the clock satisfies a given condition
(guard). For example, automaton As has two transitions
labelled with the conditions x > P and y > J, where P and
J are parameters of the automaton. As soon as the clock
y satisfies the guard y > J, the automaton takes the cor-
responding transition and outputs the action VP!, resetting
to zero the value of the clock y (y := 0). When multiple
transitions are enabled in a location, then the one with the
highest priority will be taken.

Consider the finite path p = (¢, 2)[2,7](¢’, 2)[4, —](¢’, ) of
the network N from the initial state (g, 2). Each parenthe-
sised tuple represents a global state of the network, namely,
states of each component automaton. Each bracketed tu-
ple shows the transitions taken from the respective states
of the tuple, with hyphen meaning that no transition was
taken. In the automaton As, y is initially 0 and, after J
time units have passed, the guard y > J becomes true and
the corresponding transition (7) is triggered at this point,
outputting the action VP and resetting the clock ¢ to 0. The
automaton A; then synchronises with Ay via the matching
input, VP, which moves the automaton to ¢’ through tran-
sition 2. Then A; takes transition 4 and 4> does not transi-
tion. Note that, for the automata to transition this way, the
parameters must be constrained such that transition 4 trig-
gers before transitions 1 and 3. When we instantiate all the
parameters 1", P and J in the network A, we obtain a sin-
gle timed path p = (q,2) = (¢', 2) = (g, 2) "> (¢,2) -,
ti € R>0,7 > 0, that describes the evolution of the network
composed of A; and As. This is equivalent to saying that
N is deterministic.

In this paper, we are interested in finding the values of
parameters T', P and J such that the network A satisfies a
given property. We consider properties expressed in count-
ing metric temporal logic, which can count the number of
actions in a given interval of time. For instance, the for-
mula ¢ = #ZVP > 1 states that the number of VP actions
in the interval of time [5,7] is greater than 1. There may
be more than one set, possibly many sets, of parameter val-
ues that satisfy the set of linear inequalities. In practice,
only the parameter values that are robust or that maximise
a given objective function are likely to be of interest. To



allow such interesting values to be found, we partition the
set of parameters into controllable and uncontrollable. Then
the objective function is used to choose the best value for a
controllable parameter such that it maximizes a cost func-
tion over the uncontrollable parameter values.

We define the optimal parameter synthesis problem with
respect to an objective function. We do not restrict to a sin-
gle type of objective function, and instead admit a family of
them, each of which will correspond to ensuring a particular
quantitative property.

Optimal parameter synthesis problem

Input:

A parametric network of Timed I/O Automata
(TTIOAs) N, a set of parameters ' =T, UT,

composed of controllable (I'c) and uncontrollable (T'y,)
parameters, a Counting Metric Temporal Logic CMTL)
formula ¢ and a path length n.

Problem:

Find the optimal parameter values for I'. for any values
of parameters I';, with respect to an objective function
O such that ¢ is satisfied on paths of A of length n,

if such values exist.

3. PARAMETRIC TIMED I/0 AUTOMATA

In this section we introduce the modelling framework used
in the paper. We adopt the timed I/O automata (TIOA)
model defined in [19], which we augment with parametric
guards and priority on the transitions in order to impose de-
terminism. We remark that non-determinism is often viewed
as an undesirable feature, since it could lead to dangerous
behaviours of the system. For such a reason, we tailor our
model to the specific domain in which we operate and ex-
clude non-determinism by means of prioritised transitions.

Let X = {z1,...,z,} be a set of nonnegative real-valued
variables, called clocks. An X-valuation is a function 7 :
X — Ry>( assigning to each variable x a nonnegative real
value n(z). Let 0 denote the valuation that assigns 0 to all
clocks. For a subset X C X, the reset of X, denoted n[X :=
0], is the valuation 1’ such that Vz € X. n'(z) := 0 and
Vo ¢ X, n'(z):=n(z). For § € R and X-valuation n, n+4§
is the X-valuation 1" such that Vz € X. 7" (z) := n(x)+4,
which implies that all clocks proceed at the same speed.

Definition 1. A deterministic timed I/O automaton (TIOA)

with priority A = (X, T, Q, qo, Zin, Zout, —>,7y) consists of:
e A finite set of clocks X.

e A finite set of integer-valued parameters ' =T'. U T,
where I'; and I',, are respectively the set of controllable
and uncontrollable parameters.

e A finite set of locations @), with the initial location
q € Q.

e A finite set of input actions i, and a finite set of
output actions ous-

e A transition relation -C Q X (Zin UXout) X B(X,T) x
2% xQ, where B(X,I") denotes the set transition guards
over X and I'. For any ¢,q' € Q, X C X, if a € Zout

then e = (g,a,9,X,q') € has g # true. Also, for
any ¢ € Q and any two outgoing transitions of g with
guards g1, g2 # true, it holds that g1 N g2 = @.

e A priority function v : @ X (Zin U Xout) — N that
assigns a priority to an action in a given location. For
any ¢ € Q, ain € Zin, Gout € Yous and a1,a2 € (Lin U
Yout) we require ¥(q, ain) < (g, aout) and v(gq,a1) #
v(q, az).

Let e = (q,a,9,X,q') be a transition of TIOA A and n a
clock valuation. We say that a transition with an action a
is enabled if either a € iy or a € Yoy and 1 = g. Here
1 = g means that the clock valuation n satisfies the clock
constraints in g. Observe that every transition of the TIOA
A that has an output action is urgent, i.e., it is taken as soon
as the guard becomes true. The TIOA in the above defini-
tion can still exhibit Zeno behaviour, but one can use the
sufficient criteria in (|6], Lem. 9.24) to check for Zenoness.
From the above definition it is clear that the TIOA is deter-
ministic, i.e., at every point in time only one transition can
be taken. We impose the determinism by means of the pri-
ority function, as well as the fact that a transition labelled
with an output action is urgent. For instance, if two tran-
sitions are enabled the one with the highest priority will be
taken.

The TIOAs as defined above are able to synchronise on
matching input and output actions, thus forming networks
N of communicating automata. Informally, the network N
evolves as follows. Each component A; of N can either (i)
have an output transition with maximum priority enabled,
in which case the component fires the output transition and
moves to the next location accordingly, or (ii) if no output
transition is enabled then it either synchronises with an out-
put transition fired by another component, which must have
a matching input transition, or lets time pass. We define the
finite timed path of a network N' = {A® | i € {1,...,m}}
of TIOAs A with the set of locations QV, i € {1,...,m}

as the sequence p = gp -2 G s - L>q}2 such that
G eQWx. . xQM™ and t; > 0forallj € {0,...,n}. Thus,
each path of the network N consists of m paths correspond-
ing to the TIOAs A" (g; in p is a vector). Each transition
from every component of ¢; takes the same amount of time.

4. COUNTING MTL

In this section we define the Counting Metric Temporal
Logic (CMTL). CMTL extends MTL with basic counting
formulas (BCF), with which one can count the number of
actions (events) in a given interval of time. We use the point-
wise semantics for both MTL and BCF. We refer the reader
to a survey of the differences between MTL and counting
variants of MTL in [22][13].

Given a finite timed path p, we define the set Act; =
Yout,j UXin,; of actions at step j corresponding to the set of
transitions that are taken at step j. We write p[j] := Act;
for (j < n) and p(j) := t;. Moreover, for t € Rxo, pQt := o,

where o is the smallest index such that Y. p(k) > t. We

k=0
define
. Lot ot tno1 . -
plil =G L gt - =gy

to be the suffix of p starting at step j.



Definition 2. Let p = g -9 g1 45 ... =14 i be the
finite timed path of the network A of TIOAs. The counting
function #¢a for an action a € (Xin U Xout) and time points
£ € Rxo, u € Ryo U {0}, such that £ < u, is defined as

(pQu)—1
#ia= >, (a€plk]).

k=(p@t)
A basic counting formula (BCF) B is of the form
B = Z cj #ij aj, where J is a finite index set, (1)
jeJ
¢j € Lo, j,uj € Rxo (with the usual constraint that £; <
u; for all j) and a; € (Zin U Zout)-

We now define our logic CMTL as an extension of MTL,
where we replace atomic propositions with BCF formulas.

Definition 8. The syntax of the Counting Metric Tempo-
ral Logic (CMTL) ¢ is defined inductively by
pu=BabloAp|—p| Uy,

where < € {>,>,<,<}, b€ Z,and £ € Ryo, u € RygU{o0}
are time points such that ¢ < u.

The satisfaction relation for CMTL is defined over timed
paths of the network A of TIOAs.

Definition 4. Let p = g -9 g1 -4 ... =14 i be the
finite timed path of the network N of TIOAs and i € N be an
index. We say that N satisfies ¢ at i, denoted (p, %) |:N ®,
iff

p[[i]]@uj—l
iff ch Z (aj € plk]) > b

J€J  k=pliat,

iff (p,7) EY 01 A (p,i) BV @2

iff (p,i) " o1

(p,i) EY Boab

(p.1) EY 01 Ao
(p.1) B~

v

iff 3i' i <i' st Y p(k) € [6ulA
k=i

(pi) EY o1 up,

(p, i) EN o AV i < i< i A

(p,i") EY 1,
where 1, @2 are CMTL formulas, and i’,i” € N.

We define O4%p := true Yy and Oy .= ~o Ul

S. PARAMETER SYNTHESIS

In this section we describe the algorithm to find the values
for the controllable parameters such that the instantiated
network of TIOAs N satisfies a given CMTL property .

A naive solution to the problem is to enumerate all possi-
ble values I for the parameters I, under the assumption of a
bounded integer parameter space, and for each value gener-
ate the unique path p in the network of TIOAs N. Observe
that T is finite. Next, we check the satisfaction of the prop-
erty ¢ on path p, which results in a set of parameter values
I C T such that each value in I induces an instantiated
network that satisfies the property ¢. The best choice of
the parameter value is the one that maximises the objective
function. Note that, if m is the number of possible values
for a parameter, then the size of I is m!/"!. Given the expo-
nential size of I, the problem of finding the best parameter
values becomes infeasible in practice.

We instead propose an approach based on parameter sam-
pling and constraints generation. First, we sample a suffi-
ciently large number of values from the set I'. Second, for
each sampled parameter value we generate the discrete path
p in the instantiated network of TIOAs N. Given the un-
timed path p, i.e., the discrete path obtained by eliding the
time values, we generate a formula S on the parameter set
I'. Therefore, the formula S will correspond to all parameter
values that generate the same untimed path p. From here on
we use the notation ¥ € S to say that the parameter value
¥, once plugged into the parameters of S, makes the formula
S true. We say that ¥ ¢ S otherwise. The advantage of the
constraint generation approach is that, with fewer samples,
we can cover more values from T

In a nutshell, the synthesis problem can be solved by first
generating a formula S from property ¢ and path p of N,
described in Section [5.1} and then finding an optimal solu-
tion for & with respect to the given objective function O,
described in Section

5.1 Constraint generation

We first describe the intuition for how to compute the for-
mula S that guarantees the satisfaction of the property along
the path p, and next present Algorithm [T that generates S.

The formula S is computed with the following simple
steps:

1. Sample the domains of the model parameters in order
to generate a discrete path.

2. For each sampled parameter value do:

o If the value does not make the formula S true

— Generate the untimed path p.

— Generate the set of inequalities which satisfy
¢ in p (Algorithm 2] and [5)).

Algorithm [I] generates the formula S with the help of two
main subroutines, Algorithm [2| and Algorithm We now
describe Algorithm [I] and its subroutines step by step.

Algorithm 1 Constraint generation for A with m-
components, CMTL formula ¢ and path length n

Require: Network N, formula ¢ and path length n
Ensure: Formula &

1: Function Sat(N, ¢, n)

2: T := Sample(T")

3: for 9 €T do

4:  if 9 ¢ S then

5: p := Gen_path(N, n, )

6: (85, T) := Path_Constr_Gen(N, p)
7 S, := Constr_Gen(p, 0,0, T)
8 §:=8V(S, \S,)

9 end if

10: end for
11: return S

The first step (line 2) of Algorithm [1| samples the do-
main of I obtaining the set of parameter values I'. The
algorithm then iterates over each point of T' and at every
iteration checks whether the value under consideration, say
¥, satisfies the formula S or not. This operation is indi-

cated in Algorithm [If with ¢ ¢ S. The intuition behind this



step is that multiple model parameters will satisfy the same
formula §. Thus, instead of generating the constraints for
the discrete path p given by parameter value ¥, we check
whether ¥ € S. If this is the case, we then skip this value
and therefore save computation time. The second step of
the algorithm generates a discrete path p from the parame-
ter value ¥. The algorithm is based on the semantics of the
network of TIOAs (see technical report [9]). The function
Gen_path returns the untimed discrete path p. Afterwards,
Algorithm [1] generates constraints over the parameter set T'
from the discrete path p of length n. This is accomplished
with Algorithm [2} which is composed of two function calls
described in the next paragraph. The algorithm returns the
formula S, and the matrix of time constraints 7. The ma-
trix 7 contains the time constraints ¢; over the parameter
set I' corresponding to every discrete transition that is taken
at step j € {0,...,|o| — 1} of p. The formula S, contains
the relationship between time constraints 7, as well as the
clock valuations 17 and guards g. For instance, if there is a
transition labelled with a guard = < «, where x € X and
~v €T, then S, will contain the constraint n(z) < ~. In this
case n(z) is an expression over the parameter set I

The first function call of Algorithm [2| at line 5 (Algo-
rithm [3)) iterates over the set of transition with maximal
priority Z; that are taken at step j and generates the sym-
bolic time constraints 7[j,4]. It also generates the formula
S, relating the clock valuations and the guard bounds. For
instance, given the transition e := (q](vi)7 a, gV, x®, qﬂl),
where a is an output action, S, will contain the expression
{(n(x) < g(” z(2)} if z < g™ .z(2) is a constraint in guard
g9, Here g (1) denotes the sign for the clock « in guard
g and ¢ .z(2 ( ) denotes the bound of z. At the end of the
cycle (line 14), the algorithm creates a new clock valuation
Tnext from the symbolic time constraint 7[j,4]. The for cy-
cle at lines 7-11 in Algorithm [2]resets all the clocks that are
associated with transitions that are taken at step j. The
set of transitions that are taken and labeled with an output
or input action is given by Z; UZ;. The last function call
of Algorithm [2] at line 13 (Algorithm [4)) generates the for-
mula S,, for the remaining transitions I; that are not taken.
Finally, line 15 and 16 of Algorithm[2]adds to S the relation-
ships between all time constrains, namely, T[j,i] = T[4, k]
for every taken transition that has an output action, and
Tlj, k'] > Tlj,7] for the remaining transitions that are not
taken, where i,k € Z; and k' € Z§.

Ezample 1. In Table[I]we show a sample execution of Al-
gorlthm.for the discrete path p = (¢, 2)[2, (¢, 2)[4, =] (¢, 2)
(recall that parenthesised tuples represent states and brack-
eted tuples represent transitions) of the TIOA from Fig.
where j denotes the index of the path. At the beginning of
the path, all three clocks, t, x, and y, are set to zero initially
(shown by the clock valuations in column 0). Ay outputs
VP and A; synchronizes with it after J time units (time
constraints in column 0). Transition 7 is the first transition
taken by A2, and therefore it must occur before other pos-
sible transitions, namely, transition 6, meaning that y > J
must become true before x > P. Since both clocks started
at 0, J < P (S in column 0). Then A; takes transition 4,
which is fired when ¢t = T. Since ¢ = J before the tran-
sition (clock valuation in column 1), the time taken to fire
the transition is 7' — J (time constraint in column 1). The
time taken to fire transition 4, T'— J, must be less than the

Algorithm 2 Constraints generation for the path p

Require: Network N and discrete path p
Ensure: Formula § and matrix 7 over I'

1: Function Path_Constr_Gen(\, p)

2:n:=0,8§:=0

3: for j _Oto ol — 1 do

4: 7 - index of taken transitions that have an output

action

5 (Se, T, m):=Sync Constr(N, j, p, T;, T,n) (Alg. ).

6:  I7 - index of taken transitions that have an input ac-
tion

7. for x € X do ) )

8: if € X9 for some e := (qj(.z),a,g(i),X(i),qj(Ql)

and ¢ € Z; UZ; then
9: n(z) := 0 - reset all the clocks that are associated
with a taken transition

10: end if

11:  end for

12:  Z5 - index of transitions that are not taken

J

13:  T:=NSync_Constr(N, j, p,
14: S§:=8SAS, -

A Tl

i,k€Z;

N Tl <Tl, ]}

1€Z; kEIC

5, T) (Alg. .

guard constraints

15: S:=8A —T[j,k}}

16: S:—S/\{

17: end for
18: return (S,7)

Algorithm 3 Constraints generation for the path p (com-
ponents that synchronise)

Require: Network N, path index j, discrete path p, set of
transition indices Z, sequence of time constraints 7 and
clock valuation n

Ensure: Formula S, matrix 7 and clock valuation 7next

1: Function Sync_Constr(N, j,p,Z,T,7n)

2: for i € 7 do

3 Tli:=0,8:=2

4: €9 .= (q(l) g, x0 ),q;fgl) - is the transition with

maximal priority from location q]( ), a is the corre-

sponding action, ¢ is the guard and X is a set of
clocks

5. for z € ¢ do

6: if gW.z(1)=">" or g(') z(1) =" >"” then
T T, ] = maX{T[J»Z] 9".x(2) —n(x)}
8: else if ¢ .z(1) =7 <” then

9: S:=8SA {n(i)(as) < g9.z(2)}

10: else

11: S :=SA{nW(z) < g .x(2)}

12: end if

13:  end for

s Mnext := 1+ T, 4]

15: end for

16: return (S, 7T, Nnext)

time taken to fire transition 1, P — J (since x = J at the
beginning of j = 1 and transition 1 synchronizes with tran-
sition 6 when x = P), and transition 3, J — 0 (analogously
to transition 1). This is shown in the S row in column 1.



Algorithm 4 Constraints generation for the path p (com-
ponents that don’t synchronise)

Require: Network N, path index j, discrete path p, set of
component indices Z and matrix of time constraints 7
Ensure: Matrix 7 over I’

1: Function NSync_Constr(N, 4, p,Z,T)
2: for k€ Z do
3 T,k =0
4 M= (¢, a, 9", X W, gf))
5:  for z € g™ do
6: if g®.z(1)=">7 or g®.z(1) =” >” then
T: Tl k] == max{T[j, k], g .x(2) — n(x)}
8 end if
9 end for
10: end for
11: return 7T
7 T0 1
To={7},Z5=12},Z6={6} | Th={4},Zi=2,77={6,7}
A, | o (t)=0 T,4)=T-J
m(t)=
T1[0,7]=J,T|[0,6]=P TIL,6|=P—J,T[1,7]=J
Az | no(z)=0 m(z)=J
10 (y)=0 71 (y)=0
S | J<P T—J<P—JA
T—J<JNJ<P

Table 1: Example constraints for Algorithm

The function Constr_Gen from Algorithm [5| generates the
formula S, for the CMTL formula ¢. It uses the function
Sum_Gen to generate constraints for a basic counting for-
mula BCF B (see Definition [[). The function Sum_Gen cre-
ates two sets, L and U, for the lower and upper bounds,
respectively, appearing in B. The sequence w contains the
ordered set of elements from L UU and the function f maps
an element of L UU to an element of the sequence w. The
main phase of Sum_Gen involves generating all possible or-
derings of the transitions occurring in p, where p is the un-
timed suffix of length ¢ of p, with respect to the elements of
w. This is achieved with the outer disjunction over the set
{0,...,]p] — 1}. For every possible ordering, the algorithm

Yf(uy)~1
checks whether the formula Y ¢; 2]:

JEJ  =Usey)

a; € plt) = b
holds.

Ezample 2. In this example we show the execution of Al-
gorithm [5| (function Sum_Gen) for the path in Example
and formula ¢ = #IVP > 1. The first column of the ta-
ble shows all possible ordering of variables y1 and y2. Note
that, for a path of length 2, y; € {0,1}, ¢ € {1,2}. The sec-
ond column of the table shows how the time constraints are
generated, while the third column shows the formula that
checks whether there is at least one VP action present in the
interval of time 5 to 7. Here to = 710,7] and t1 = T1,4]
(see Example [1)).

The remaining steps of Algorithm [5| generate constraints
for a CMTL formula. The algorithm proceeds by induction
over the structure of the formula and generates the formula

Ordering A pQw(z) =y, ®
2€{0,...,|®|}
(y1 =0Ay2=0) (to > 5) false
_ _ (to >5) A
(yl_O/\yQ_l) (t0+t1>7/\t0<7) true
. . (to+t1 >5ANto <5)A
(yl_l/\y2_1) (to+t1>7/\t0<7) false

Table 2: Example constraints for BCF ¢ = #IVP > 1.

S over I'. Finally, line 8 of Algorithm [I] takes the disjunction
between the current expression for the formula S and the
conjunction between S, for the path p and S, for the CMTL
formula . If every path in N does not satisfy the formula
¢ then § := false. The formula S is used to compute the
value of an objective function described in the next section.

In this paper we state three main theorems. Theorem
deals with the correctness of the generated formula S. The-
orem [2| shows that any CMTL formula is preserved, even if
the domain of the parameter I' is the set of rational numbers.
Finally, Theorem [3|shows how the number of parameter val-
ues covered by the contraints in Algorithm [I] increases with
the number of samples.

tn—1

Theorem 1 Let p = Gy 2 ¢ s - .- —2=15 g, be the timed
path of the network N of TIOAs and i € N an indezx (i < n).
For every CMTL formula ¢ it holds

(p,i) EN ¢ iff Constr_Gen(p,i, o, T) = true,
where T[j,-] :=t; for all j < n.

Let I'" be the set of all natural numbers and I'" be the
set of all rational numbers representing the parameter set
I'. More formally, for every ¥ € I'" we have [¢] € I'" or
[9¥] € I'™. Here we assume that the domain of I is bounded.

Theorem 2 Let N = {A" | i€ {1,...,m}} be a network
of TIOAs A and n € N. We have that

\/(S/\Constr,Gen (p,0,0,T))= \/ (8'AConstr_Gen(p',0,¢,T"))

gern 9 erT

where p := Gen_path(N, n,¥), p’ := Gen_path(N,n,9"), (S,
T ) := Path_Constr_Gen(N, Gen_path(N, n,¥)) and (S',T") :=
Path_ Constr_Gen (N, Gen_path(N,n,¥")) for all 9 € T™,
and 9" € T'". Here we say that two constraints are equal if
they share the same solution set.

Let |T"| be the size of I'™ and #s = \Tlm Z‘lzl 1(¥; €
S), where 1(9; € S) is the characteristic function, be the
fraction of the total number of parameter valuations that
satisfy the formula S. Let #f;k =3 Ele 1(9; € Sk) be the
estimator of #s based on a sample of size k < |['™|. Here Sk
denotes the constraints corresponding to k discrete paths.
Note that limj_, rn| #5, = #s.

Theorem 3 (Finite Population Sampling) Given a sam-
ple size of k < |I'™| we have that the standard error of #fgk

k
18 O¢ v [T, where o s standard deviation.




Algorithm 5 Constraints generation for CMTL formulas

Require: Discrete path p, path index i, CMTL formula ¢ and sequence of time constraints 7
Ensure: Formula S
1: Function Constr_Gen(p, i, ¢, T)

2: case(yp) :
p=> c]-#z_j aj >1b S := Sum_Gen(p, i, )
=
» = -1 S := —Constr_Gen(p,i,p1,T)
Y =p1Ap2 S := Constr_Gen(p, i, p1,T) A Constr_Gen(p, i, 02, T)
n i i’ —1
o = iU, S:=(V ConstrGen(p,i', 2, T) AL <> Tkl <uA (A Constr_Gen(p,i", ¢1,T)))
=i k=i i =i
3: return S
4: Function Sum_Gen(p,i,¢,T)
5 p=pli], L:={l;|jeJ}, U:={u; | j € J} and w := sort(L U U)
6: f maps an element of L UU to an element of w

Yf(uy)~1

paw(z) = yz> PP

JET = Ys(ey)

7. S = a; € pltlab

8: return S

9: We define (pQ@(2) = y.) := (ygo Tli+4 > @(z) A yg Tli+ < w(z)) and

10: Tj] := T1J, "] - to be the sequence of time constraints that correspond to taken transitions for all j < |p| —1

Proofs of the theorems can be found in |9]. From the above

k
Vit
—F— as

theorem it follows that error o. decreases with v

the sample size increases.

5.2 Parameter optimisation

After generating the formula S, we are ready to tackle the
parameter synthesis problem, i.e., to find the optimal solu-
tion for the set of controllable parameters I'. with respect
to an objective function O. The optimal solution will be the
one that maximises O. We emphasise that there is no single
optimal solution. The optimal solution should be the one
that best fits the domain of the application. For this reason,
we present two different choices of the objective functions
that we believe are relevant for the pacemaker case study
presented in the next section. The first consists in maximiz-
ing the value of an integral over the domain V(T'y,), i.e.,

opt, := argsup Distrr,, (ddy,).

Y veevro)
Yy €V(I'y), (¢, 94 )ES

Here V(I'.) and V(I'y) denote the set of all possible values for
parameters I'c and 'y, respectively. The idea of the integral
is to find a valuation for the controllable parameters that
satisfies the formula & and that also maximises the prob-
ability mass associated with the uncontrollable parameter
set. In the above objective function, we assume that the set
of uncontrollable parameters, ', are distributed according
to Distrp,. If Distrr, is a discrete probability distribu-
tion, then the above objective function can be reduced to
a linear programming problem, for which standard solution
algorithms exist. If Distrr, is continuous, then it is always
possible to discretise V(I'y) or apply Monte Carlo simula-
tion techniques. In the special case when Distrr, is the
uniform distribution, the above objective function becomes
a volume integral parametric in V(I'¢), for which efficient
solutions also exist [21].

In some practical examples it does not suffice to find an

optimal solution unless it is also robust (see 12} [11] for var-
ious definitions of robustness). Intuitively, we say that a
set of model parameters is robust if a small variation at the
values of the model parameters does not affect the validity
of the formula under consideration. We explain the concept
with an abstract example. For instance, consider the prob-
lem of finding optimal parameters for an embedded device.
Running Algorithm [I} we find the optimal controllable pa-
rameters opt, for which the device satisfies the safety prop-
erty ¢. Let opt] be a sub-optimal solution, i.e., opt, < opt,.
Now consider that a small change of € in opt,, invalidates ¢,
whereas the same change in opt! does not affect the valid-
ity of . In this case it makes sense to chose opt! rather
than opt, because opt! is more “robust”. In light of this
example, we introduce a new optimal parameter synthesis
problem (opt,.) that captures the concept of robustness:

Be(9) = {0 € V() | |[9' — Iloc < €},

opt,. := argsup {sup{e | 9y € V(T'u), Be((¥c,94)) C S}}
P9.€V(Le) €

where the norm ||’ —9|| for 9,9" € V(T') and T’ = {v1,...,vn}

is defined as max{|9(v1) — ' (v1)l,..., [9(vnr) — ¥ (vn)|}-
Note that the above optimisation problem can be trans-
formed into a linear programming problem.

6. IMPLEMENTATION

We have implemented all the algorithms in Python for
the full fragment of CMTL, using Z3 theorem prover [2] for
constraint solving. Just as the synthesis technique was de-
scribed in terms of constraints (Section and optimiza-
tion (Section , we also describe implementation along
the same lines.

Our implementation currently assumes one controlled pa-
rameter and one uncontrolled parameter. Each parameter
has a lower and an upper bound, which is encoded as a con-
straint (in Z3). Even with bounds, the parameter space is



too large, and therefore we sample points from which we
synthesize the parameter values. Namely, for each sam-
pled point (which consists of a controllable value and an
uncontrollable value), a discrete path and the correspond-
ing timed path, safety and energy constraints are gener-
ated. The disjunction of the constraints generated from each
sampled point, conjuncted with the parameter bounds con-
straint, represents a subset of the parameter values within
the parameter bounds. This subset encodes the synthesized
parameter values that satisfy the specified safety and energy
constraints.

We determine the volume of a synthesized value by sam-
pling the set of uncontrollable parameters and checking with
the Z3 SMT solver if the sampled value of the uncontrollable
parameter satisfies the generated constraints. The volume
is the ratio between the total number of values that sat-
isfy the constraints and the total number of sample points.
We choose the controllable parameter value that gives the
largest volume. To synthesise a robust value we first pick a
seed point from the set of parameters values. Then we check
to see if points that are ¢ distance away from the seed, in
both controlled and uncontrolled directions, are also valid
parameter values, with an increasing ¢ starting from the
smallest possible value of 1 (since parameter values are inte-
gers). We use the Z3 SMT solver to check if all the param-
eters in the rectangle (defined by the sup norm) are valid.
This process is shown in Fig. [2] as a search for the largest
rectangle centered around the chosen point, y, that is within
the triangle. The process continues until an invalid param-
eter value is found, i.e. the rectangle goes outside of the
triangle, or until some upper bound for epsilon is reached.
We choose the controllable parameter value that gives the
largest e.
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Figure 2: Robustness Example

7. CASE STUDY

In this section we present a pacemaker case study where
we apply the techniques developed in the paper. The goal
is to synthesise one of the parameters of the pacemaker in
order to ensure its correct behaviour, while at the same time
optimising the value of a given objective function.

The pacemaker is a medical device that is implanted un-
der the skin of the chest and has the purpose of delivering
electrical signals to the human heart in order to maintain a

given heart rate. It delivers the electrical signals using two
leads, one for the atrium and one for the ventricle. The pace-
maker can pace the heart as well as read the signal (action
potential) generated by the heart.

We solve the pacemaker synthesis problem by modeling
the heart, the pacemaker and their composition using TIOAs.

The heart model is composed of three TIOA components
(see Fig. : atrium, conduction and ventricle. The atrium
component (Fig. is responsible for generating atrial beats.
It waits for a signal (action potential) from the SA-node,
which is the natural pacemaker of the heart, or from the
pacemaker by means of action AP. The firing time of the
SA-node is modelled by a transition labelled with the guard
t > PP, which defines the natural frequency of the heart.
Note that the SA-node belongs to the atrial component.
The atrial component generates atrial beats by means of
action Aget. We also model a blocking period denoted by
the paremeter AERP. The purpose of the period is to deny
consecutive stimulation of the atrium from the pacemaker.
That is, a stimulus from the pacemaker is blocked if the time
difference between the previous stimulus and the current one
is less than AERP.

The conduction component models the propagation delay
of the atrial signal through the atrium and the AV-node.
The delay is given by the parameter TAVD. When the action
potential originating from the atrium reaches the ventricle,
the conduction component notifies the ventricle component
by means of action CD.

The ventricle component is responsible for generating ven-
tricle beats. It can receive a signal VP from the pacemaker
or from the conduction component CD. The wventricle com-
ponent generates ventricle beats by means of action Vget.
Here we also model a blocking period denoted by the pa-
rameter VERP.

We emphasise that the heart model in Fig. |3| can be tai-
lored to individual patients. For instance, both PP and
TAVD can be estimated from the patient electrocardiogram.
The parameters AERP and VERP can be estimated at the
time of the implantation of the pacemaker. We treat PP,
TAVD, AERP and VERP as uncontrollable parameters.

For this case study, we consider the basic pacemaker model
introduced in [16] which consists of five TIOA components:
the lower rate interval (LRI) component (see Fig. [3d), the
atrio-ventricular interval (AVI) component, the upper rate
interval (URI) component, the post ventricular atrial refrac-
tory period (PVARP) component and the ventricular refrac-
tory period (VRP) component. In this case study, we focus
only on the LRI component and omit descriptions of the
components for reasons of space; see |16] for more detail.

The LRI component keeps the heart at a given mini-
mal rate, which is denoted by the parameter TLRI — TAVI.
Here the parameter TAVI denotes the atrial-ventricular de-
lay, which has the same meaning as TAVD. The difference
between TAVI and TAVD is that the former is a controllable
parameter which can be modified in order adjust the pacing
rate, whereas the latter is defined by the heart and varies
from patient to patient. The LRI component stops pacing
the atrium as soon as the input action AS is enabled. This
occurs when the SA-node fires. Note that, for the sake of
clarity, we do not depict the priorities in the pacemaker and
heart components.

Now the goal is to synthesise the pacemaker parameter
TLRI — TAVI (we consider the difference as a single parame-
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Figure 3: Pacemaker and heart components.

ter), which is the amount of time that the pacemaker waits
before delivering an atrial pace. TLRI — TAVI is a control-
lable parameter in our model and its value is critical for the
correct functioning of the pacemaker device. We check the
correctness of the pacemaker against the following CMTL
formulas:

1) Ol l(#ivget > By A#JVget < Bs) - safety property.
2) 1-#{AP + 2 - #JVP < E - energy property.

The first formula states that it is always the case that the
heart beats (ventricle beat) at least Bi1 and no more than
Bs times in the interval of time [0, 7]. The second formula
states that the pacemaker consumes no more than E units
of energy in the interval of time [0, 7]. For every atrial beat
AP the pacemaker consumes 1 unit, and for every ventricle
beat VP it consumes 2 units.

In the experimental results we pick PP to be the only
uncontrollable parameter following a uniform distribution
and all other parameters are constant. We also choose the
path length n := 15 and the time bound 7 above from the
set {1000,1500}. Here all the values of parameters are in
milliseconds. We note that all the experiments run in less
than an hour.

For the safety property we synthesise the TLRI — TAVI
parameter. We set 7 := 1000 (milliseconds), B; := 1 and
B2 := 2, meaning that the pacemaker should maintain a
heart rhythm between 60 and 120 beats per minute. We
sample 160 parameter values for PP and TLRI — TAVI and
generate discrete paths of length 15. For all the paths and
the formula we generate the set of constraints S. The task is
to synthesise a value for TLRI — TAVI such that the validity
of the safety formula is preserved for any value of PP. As
discussed in Section [5.2} the optimal parameter valuation
might not be robust. In this example, we have that a value
for TLRI — TAVI of around 1000 is optimal (we have used
200 sample points to compute the volume objective func-
tion). This is due to the fact that, when TLRI — TAVI is in
that range, the pacemaker model satisfies the safety formula
o for the largest set of parameter valuations of PP. However,
setting TLRI—TAVI to 1000 is not robust from an implemen-
tation point of view. In fact, if we have a small perturbation
of TLRI — TAVI, say from 1000 to 1001, the safety formula
 is invalidated. A more robust choice is to pick values for
TLRI — TAVI around 850 (and this is the value returned by
Algorithm [I| using the robust objective function). For the
robust objective function we have used 500 sample points.
Picking the value of TLRI — TAVI around 850 reduces the
number of PP behaviours that we cover. However, in this

case, a small change of TLRI — TAVI will not invalidate the
safety formula ¢. We remark that some major pacemaker
manufacturers, such as Boston Scientific [1], suggest that
these values be set between 750 and 900, which validates
the result of our algorithms.

In addition to ensuring the correct number of beats, we
can also guarantee that the pacemaker consumes no more
than a given amount of energy in an interval of time. For
the energy property we run three experiments with E = 40.
We pick two time bounds 7 = 1000 and 7 = 1500. In the
first two experiments we compute the volume objective func-
tion for TLRI — TAVI parameter (see Fig. In Fig@ we
can see that the maximal volume increases with the value of
TLRI — TAVI until the time bound 7 (blue plot for 7 = 1000
and red plot for 7 = 1500) and then it remains constant. In-
tuitively, for a pacemaker to consume the smallest amount of
energy it has to pace as little as possible. Our experimental
result confirms this intuition by synthesising the maximal
value of the atrial pacing parameter TLRI— TAVI. Note that
the maximal value of TLRI — TAVI for 7 = 1500 does not
make the pacemaker safe. The safe value for TLRI — TAVI
is around 850. In the second experiment we compute the
robust objective function for TLRI — TAVI. In Fig[dh] we
see that the most robust value for TLRI — TAVI is around
1000. A safe value for TLRI— TAVI should be less than 1000.
Therefore, to ensure the safety and the minimal energy con-
sumption of the pacemaker one should check the conjunction
of both the safety and the energy properties.

8. CONCLUSIONS

We have developed an algorithm to synthesise optimal
timing delays for real-time embedded systems modelled as
an extension of TIOA with priorities and parametric guards.
Focusing on medical devices as an application domain, we
propose CMTL, an extension of the Metric Temporal Logic
with counting formulas, which can express fundamental safety
properties for pacemakers, as well as quantitative require-
ments for energy consumption. As future work, we plan to
improve the efficiency of the algorithms in order to tackle
the high complexity of constraint generation algorithms.
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