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1 Introduction

Software is surreptitiously becoming the backbone of modern society. Most human activities
are either software enabled or entirely managed by software. Examples range from healthcare
and transportation to commerce and manufacturing. In all these applications, one requirement
is becoming common: software must adapt continuously, to respond to changes in application
objectives and in the environment in which it is embedded. The autonomic computing vision
of systems that respond to change by evolving in a self-managed manner while running and
providing service [4, 9, 20] is rapidly becoming reality.

A second key requirement that today’s software is increasingly expected to fulfil is depend-
ability. As software is used more and more in business-critical and safety-critical applications,
the adverse impact of unreliable or unpredictable software is growing. Damaging effects varying
from loss of business to loss of human life are no longer uncommon.

These two requirements of modern software—adaptiveness and dependability—have typically
been the concern of different research communities. Researchers from the area of autonomic
computing have been developing adaptive software systems successfully for the past decade
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Figure 1: The world and the machine.

[19, 30]. In contrast, several mathematically-based modelling and analysis techniques are tradi-
tionally practised in off-line manner, to improve the dependability, performance and operating
cost (e.g., energy consumption) of software. These techniques include model checking [10] and,
more recently, a mathematically-based technique for establishing the correctness, performance
and reliability of systems that exhibit stochastic behaviour termed quantitative verification [21].
These formal verification techniques prevent errors from reaching the final implementation that
is delivered for use, or at least remove them when a new version of the software is deployed.

We argue that the only way to achieve the dependable software adaptation required by an
increasing number of applications is to bring the techniques developed by these two research
communities together. Consequently, quantitative verification and model checking must also be
used at runtime, to predict and identify requirement violations, to plan the adaptation steps
necessary to prevent or recover from such violations, and to obtain irrefutable proofs that the
reconfigured software will comply with its requirements. Software tools that implement flexible
and low-overhead variants of both techniques have to be run entirely automatically, to support
all these stages of the adaptation process. The result of adopting this approach is software that
supports not only automated changes, but also their continual formal verification, to guarantee
that the software continues to meet its requirements as it evolves.

We use our exploration of this new paradigm in a range of projects to explain how quantitative
verification can extend its operation to runtime, and illustrate what can be achieved through
it. A range of complementary approaches to using formal verification techniques in runtime
scenarios are then summarised and used to place our results in context. Looking ahead, we
present the main research challenges that must be addressed to make the transition of formal
verification to runtime efficient and effective.

2 A Reference Framework

Software evolution has been recognized as a key distinctive feature since the early 1970s by
many researchers, and most notably by Belady and Lehman [24]. Indeed, evolution is perhaps
the most important aspect that distinguishes software from other artifacts produced by humans.
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To shed light on software evolution, we refer to Jackson and Zave’s seminal work on require-
ments [31]. In this work, a clear distinction is made between the world and the machine. As
illustrated in Figure 1, the machine is the system to be developed via software; the world (i.e.,
the environment) is the portion of the real-world that needs to be affected by the machine. The
ultimate purpose of building a machine is always to be found in the world. Requirements are
thus statements on the desired phenomena occurring in the world. They should not refer to
phenomena occurring inside the machine, which concern only the implementation. Some of the
world phenomena are shared with the machine: they are either controlled by the world and ob-
served by the machine, or controlled by the machine and observed by the world. A specification
(for the machine) is a prescriptive statement of the relations on shared phenomena that must
be enforced by the system to be developed.

To develop a machine, software engineers must first derive a specification from the require-
ments. To do so, they need to understand the relevant assumptions that need to be made about
the environment in which the machine is expected to work, namely the assumptions that affect
the achievement of the desired results. These environment assumptions are often called domain
knowledge. Quoting from [31]: “The primary role of domain knowledge is to bridge the gap
between requirements and specifications”.

The set of relevant assumptions captured by domain knowledge enables us to prove that—
through the machine—we achieve the desired requirements. Let R and S be (prescriptive)
statements that describe the requirements and the specification in some formal notation, respec-
tively, and let D be the (descriptive) formal statements that specify the domain assumptions.
If S and D are all satisfied and consistent, then software engineers should be able to prove that
R also holds. Formally:

S,D |= R (1)

which states that S ensures satisfaction of the requirements R in the context of the domain
properties D. Figure 2 shows how this formalism applies to a simplified version of a medical
assistance system from [5].

Domain assumptions play a fundamental role in building systems that satisfy the require-
ments. Engineers need to know upfront how the environment in which their software will be
embedded works, since the software can achieve the expected goals only under certain assump-
tions on the behavior of the domain described by D. Should these assumptions be invalidated,
the software developed will most likely fail to satisfy the requirements.

Software evolution deals with changes that affect the machine, i.e., changes to the specifica-
tion S, which then cause changes also in the implementation. Software evolution is triggered by
a violation of the correctness criterion in formula (1), which is discovered after the software is
released. This violation may occur because:

(i) The implemented machine does not satisfy the specification.

(ii) The actual behavior of the environment diverges from the domain assumptions D made
when the specification was devised.

(iii) The requirements R do not capture the actual goals we wish to achieve in the real world.

Traditionally, a response to these changes is handled by modifying the software off-line,
during a maintenance phase. Case (i) above corresponds to corrective maintenance. Case (ii)
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corresponds to adaptive maintenance. That is, S needs to be changed to achieve satisfaction of
the requirements under the newly discovered relevant domain properties. Case (iii) corresponds
to perfective maintenance. That is, changes in R require that S also changes. For example, busi-
ness goals might evolve over time or new features might be requested by users of the application.
Because maintenance is an off-line activity, software returns to the development stage, where
the necessary changes are analyzed, prioritized, and scheduled. Changes are then handled by
modifying the specification, design, and implementation of the application. The evolved system
is then verified, typically via some kind of regression testing, and redeployed.

Off-line maintenance does not meet the needs of emerging application scenarios in which
systems need to be continuously running and capable of adapting autonomously (and as soon as
the need for change is detected) while they operate. In this paper, we mostly focus on changes
that occur in the environment (D). We use the term self-adaptive software to indicate that the
software has autonomous capabilities through which it tries to satisfy criterion (1) as changes
to D, which lead to violations of type (ii), are detected. These changes are typically due to:

• high uncertainty about the behaviour of the environment when the application is developed,
and

• high variability in the behaviour of the environment as the application is running.

This paper focuses mostly on system properties that can be expressed quantitatively and re-
quire quantitative verification, such as reliability, performance and energy consumption. Increas-
ingly, the requirements that software must guarantee are expressed in terms of these properties.
These properties are heavily influenced by the way the environment behaves, and thus environ-
ment assumptions are crucial to engineering software systems that satisfy such requirements.
For example, assumptions on the user behavior profiles may affect performance.
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Figure 2: A medical assistance (MA) application whose specification S, domain assumptions D
and requirements R satisfy eq. (1). The specification S describes a service-based system for the
MA application, comprising the possibility to perform an analysis of the patient data (provided
by service s2) or to send a patient-requested alarm (service s1). In the former case, the result of
the analysis determines whether the system should change the drugs prescribed to the patient
(service s3), send an alarm (service s1) or do nothing. D describes the domain assumptions in
terms of failure rates and costs of the available concrete services s1, s2 and s3. The requirements
R for the MA application comprise reliability-related requirements stating, for example, the
maximum tolerated probability of a service failure.
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Self-adaptation can also be explained with reference to autonomic computing [20], which em-
ploys a monitor-analyse-plan-execute (MAPE) closed control loop to achieve self-management
within computer systems. In this reference model, core to the operation of the component that
realises the adaptation process (termed an autonomic manager) is the knowledge combining
the assumptions D and specification S. This knowledge is updated continually through mon-
itoring the environment and the system through sensors, and is used to analyse whether the
user-specified requirements R continue to be satisfied. Whenever this is no longer the case,
appropriate system changes are planned and “executed” through effectors.

We argue that formal verification techniques such as quantitative verification and model
checking can provide the foundational support required by the multiple stages of the MAPE
autonomic computing loop, in order to integrate the flexibility achieved through adaptation
with the dependability that is needed for today’s pervasive software. This is exemplified in the
next section for quantitative verification, and summarised in Section 4 for a range of related
software modelling, specification and analysis techniques.

3 Quantitative Verification at Runtime

Quantitative verification is a mathematically-based technique for establishing the correctness,
performance and reliability of systems that exhibit stochastic behaviour [21]. Given a finite
mathematical model of a software system and requirements specified formally in temporal logics
extended with probabilities and costs/rewards, an exhaustive analysis of the model’s compliance
with these requirements is performed (Figure 3). Example requirements that can be established
using the technique include the probability that a fault occurs within a specified time period,
and the expected response time of a software system under a given workload.

Using quantitative verification at runtime can support several stages of the software adapta-
tion process:

1. In the monitoring stage, it supports the precise and rigorous modelling of the domain
assumptions D (Figure 4). This involves augmenting the software system with a component
responsible for the continuous updating of the parameters of a quantitative model of the
system based on observations of the system behaviour. For instance, for the discrete-time
Markov chain in Figure 4, this component can update the service failure rates x, y and
z in line with the observed service behaviour by using the Bayesian learning methods
we introduced in [6, 12]. Likewise, the parameters of the continuous-time Markov chain
models typically used to model performance-related aspects of software systems can be
updated using Kalman filter estimators [32].

2. In the analysis stage, a quantitative verification tool can be invoked automatically to
detect (and sometimes to predict) requirement violations. To achieve this, the tool verifies
the formally specified requirements R (Figure 4) against the quantitative model obtained
through combining the specification S with the updated domain assumptions D from the
monitoring stage. When a requirement r ∈ R is no longer satisfied by the updated model,
we distinguish between two different scenarios. In the first scenario, the observation that
triggered the model update was caused by observing system operations related to r, so the
violation of requirement r is detected. In the second scenario, the updated model that does
not satisfy r was obtained by observing system operations unrelated to this requirement, so
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System model D,S: discrete-time Markov chain (DTMC)

requirements R

probabilistic
model checker

(probabilistic temporal
logic properties)

system model D,S

true/false
probability
expected cost/reward

(e.g., Markov model)

Definition 1. A DTMC over an atomic proposition set AP is a
four-element tuple

M = (S, sinit,P, L),

where S is a finite set of states, sinit ∈ S is the initial state, P :
S ×S → [0, 1] is the transition probability matrix, and L : S → 2AP

is a labelling function. For all s, s′ ∈ S, P(s, s′) represents the
probability that the system transitions to state s′ when it is in state
s; and

∑
s′∈S P(s, s′) = 1 for all s ∈ S.

Example 1. The DTMC below models the behaviour of a service
used in a service-based system. The service invocation succeeds with
probability 0.97, fails with probability 0.01, and needs to be retried
(because the service is busy) with probability 0.02.

S = {s0, s1, s2, s3, s4}
sinit = s0

P=




0 1 0 0 0
0 0 0.97 0.01 0.02
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0




AP ={init, invoke, succ, fail, busy}

Requirements R: Probabilistic computation tree logic (PCTL)

Definition 2. The PCTL formulas over a set of atomic propositions
AP are defined inductively by:

φ ::= true | a | ¬φ | φ ∧ φ | P./p[Xφ] | P./p[φU≤kφ] | P./p[φUφ]

where a ∈ AP , p ∈ [0, 1] is a probability, ./ ∈ {<,>,≤,≥} is a
relational operator, and k ∈ N .

Definition 3 (PCTL semantics for DTMCs). PCTL formulas
are interpreted over states of a DTMC M = (S, sinit,P, L): given a
state s ∈ S and a PCTL formula φ, s |= φ means “φ is satisfied in
state s” or “φ is true in state s”. We have:

Example 2. The requirement that the invocation of the service
from Example 1 succeeds with probability of at least 0.985 is ex-
pressed in PCTL as ‘P≥0.985[ true U succ ]’.

s3

s2

s4

1

0.97

0.01

0.02

1

{init}

{invoke}

1

1

{succ}

{fail}

{busy}

s0

M = (

s1

S , sinit LP, , )

s0

• s |= true always holds, s |= a holds iff a ∈ L(s), s |= ¬φ iff s |= φ
is false, and s |= φ1 ∧ φ2 iff s |= φ1 and s |= φ2;

• s |= P./p[Xφ] iff, across all paths (i.e., sequences of states with
non-null probability of transition between any successive states)
si1 , si2 , . . . with si1 = s, the probability that si2 |= φ satisfies ./ p;

• s |= P./p[φ1U≤kφ2] iff, across all paths si1 , si2 , . . . , sik with si1 =
s, the probability that there is a j ≤ k such that sij |= φ2 and,
for every l < j, sil |= φ1 satisfies ./ p;

• s |= P./p[φ1Uφ2] iff, across all paths si1 , si2 , . . . with si1 = s, the
probability that there is a j ≥ 0 such that sij |= φ2 and, for every
l < j, sil |= φ1 satisfies ./ p.

where:

L={s0 7→ {init}, s1 7→ {invoke},
s2 7→ {succ}, s3 7→ {fail},
s4 7→ {busy}}

Figure 3: Quantitative verification of reliability requirements using discrete-time Markov chains
to express the specification S and domain assumptions D, and probabilistic computation tree
logic to formalise the requirements R. Quantitative verification of performance requirements
can be carried out using complementary formalisms such as continuous-time Markov chains
(CTMCs) and continuous stochastic logic (CSL), and cost-related requirements can be verified
using variants of these formalisms augmented with costs/rewards [21].
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R1: “analysis-service” ⇒
P≤0.005[ ¬request U failed-alarm ]

R2: P≤0.14[ true U failed-alarm ∨
failed-analysis ∨ failed-drug-service ]

R3: R ≤10[ true U ok ∨ alarm-service ∨
change-drug-service ∨ failed-analysis ]

. . .

Figure 4: Formalisation of S,D |= R for the software system in Figure 2. To support quantitative
verification, the specification S is modelled as a discrete-time Markov chain, comprising states
for all possible system configurations (represented as circles) and state transitions (depicted as
edges annotated with the probabilities of the associated transitions). The domain assumptions D
comprise variables that parameterise this model, reflecting the fact that service failure rates and
costs may vary in a real-world system. Finally, the requirements R are expressed in probabilistic
computation tree logic extended with the rewards operator R, for models annotated with costs.

the violation of requirement r is predicted . For example, an observed failure of the alarm
service from the system in Figure 2 may yield an updated model that ceases to satisfy
requirement R1 from Figures 2 and 4. The alarm service invocation that failed could have
been initiated by two events: (a) an abnormal result from the analysis service—in which
case the analysis detects the violation of R1; or (b) a patient request—in which case the
violation of R1 is predicted.

3. The planning stage is carried out when the analysis stage finds that requirements such
as response time, availability and cost are or will be violated. As explained in Section 2,
adaptive maintenance leading to appropriate updates of the specification S is necessary in
these circumstances. Quantitative verification can support planning by suggesting adaptive
maintenance steps whose execution ensures that the system continues to satisfy its require-
ments despite the changes identified in the monitoring phase. As an example, suppose that
the medical assistance system from Figure 2 can select its alarm and analysis services dy-
namically, from sets of services provided by multiple third parties. Although functionally
equivalent, these services will typically be characterised by different levels of reliability,
performance and cost. A quantitative verification tool invoked automatically at runtime
supports this dynamic service selection through establishing which combinations of alarm
and analysis services (i.e., which specifications S) satisfy the requirements R at each time
instant.

We used the probabilistic model checker PRISM [18] to validate the approach described above
in domains ranging from dynamic power management [7] and data-centre resource allocation [8]
to quality-of-service optimisation in service-based systems [5, 12]. The last of these applications
was used as a basis for the simplified example of a software system from Figures 2 and 4,
and is presented in more detail in Figure 5. Success in these projects indicates that employing
quantitative verification in runtime scenarios can augment software systems with self-adaptation
capabilities in predictable ways.
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from different providers. SBSs are used in application domains that include e-commerce, on-line banking and
healthcare, and are required to operate in scenarios that involve frequent changes in environment and requirements.
As a result, the effectiveness of SBSs is increasingly dependent on their ability to self-adapt. One way of devising
self-adaptive SBSs is to dynamically select the services that implement their operations from sets of functionally
equivalent services that are associated with different levels of performance, reliability and cost.

The diagram below depicts a simplified version of a self-adaptive medical assistance SBS from [2]. The upper-left
corner of the diagram shows the SBS specification S, domain assumptions D and requirements R at the initial time
instant t1, when the requirements are satisfied: S,D |= R. However, as the failure rate of the alarm service used by
the SBS (i.e., s21) is observed to increase through Bayesian learning in the monitoring stage of the MAPE autonomic
computing loop, the runtime use of quantitative verification in the analysis stage establishes that the requirements
are violated at time instant t2: S,D′ |=/ R. To remedy this, the planning step of the MAPE loop uses quantitative
verification to select another service for the alarm operation. Accordingly, a new specification S ′ is employed to
ensure that the requirements are again satisfied at time instant t3: S ′, D′ |= R.
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Figure 5: Self-adaptive service-based systems using quantitative verification at runtime
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Using Markovian models at a carefully chosen level of abstraction enabled the adaptive
systems described above to operate with acceptable overheads1 for medium and small-sized
systems. Scaling beyond these system sizes requires faster runtime verification algorithms, and
our recent research to devise such algorithms shows great promise [13, 22]. This research exploits
a unique characteristic of the approach, namely the fact that the system model and the verified
requirements are unlikely to change significantly between adaptation steps.

The work in [13] pre-computes the probabilities associated with reliability-related require-
ments of a software system as symbolic expressions parameterised by the domain assumptions.
As a simple example, the “probability that an invocation of the analysis service is followed by an
alarm failure” associated with requirement R1 for the system in Figure 4 can be pre-computed
as P1 = (1 − y) × 0.12 × x, where the parameters x and y represent the failure rates of the
alarm service and the analysis service, respectively. This “once only” pre-computation step is
complemented by a runtime verification step in which the symbolic expressions are evaluated
for the actual values of the system parameters. In our example, the runtime verification step
consists of calculating the new value of P1 each time the domain assumptions about the pa-
rameters x or y change as a result of the runtime monitoring. The overheads associated with
the pre-computation step are comparable to those of standard quantitative verification, but the
overhead to evaluate a set of symbolic expressions in the runtime verification step is negligible
irrespective of the system size.

The approach in [22] achieves similar improvements by using an incremental technique for
the verification of Markov decision processes, which subsume discrete-time Markov chains dis-
cussed previously, for the case where the probability value can vary at runtime. This technique
exploits the fact that small changes in the model being verified often affect only a small sub-
set of its strongly connected components (SCCs). By reusing the verification results associated
with the SCCs unaffected by change between one adaptation step and the next, the technique
substantially reduces the computation cost of re-verification of the requirement. A symbolic
implementation of the technique was shown to reduce the verification time by up to two orders
of magnitude [22].

The scalable verification techniques described above enable the use of quantitative verification
at runtime to develop larger adaptive software solutions than previously possible.

4 Related Work

In recent years, several research communities have made advances towards the integration of
formal verification techniques into the runtime software adaptation process. These results are
contrasted with our work on quantitative verification at runtime, as described below.

Crow and Rushby’s work on a theory of fault detection, identification and reconfiguration
[11] represents an early precursor of using formal verification in the runtime software adaptation
process. In his later work on runtime certification [29], Rushby emphasises the need for runtime
configuration, and argues that any software reconfiguration at runtime must be accompanied by a
certification of its dependability. In this context, Rushby argues that the use of formal verification
represents an effective approach to achieving runtime certification, and describes a framework
that enables it—including through the runtime use of “methods related to model checking” [29].

1Typical self-adaptation times ranged from hundreds of milliseconds for the disk-drive power management
solution in [8] to a few seconds for the applications in [5, 7, 12].
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The range of (qualitative) correctness properties whose realisation is supported by this framework
(e.g., safety and reachability) complement the spectrum of reliability- and performance-related
properties that can be managed using our quantitative verification at runtime approach.

Recent advances in the area of models @ runtime provide additional evidence that the runtime
use of models has the ability to support software adaptation. Morin et al. [26] describe a
method for developing adaptive software by predefining a set of system configurations, and using
aspect-oriented model reasoning to select the most suitable of these configurations at runtime.
Different configurations may be associated with different quality-of-service properties, or with
different sets of supported services. The approach is likened to a “dynamic software product
line” [26]. Similar results have been obtained through the use of architectural models as a guide
for the software adaptation process [14, 15]. These approaches employ general and user-defined
constraint verification techniques to change the architecture of a software system at a coarse
level (e.g, by switching between two versions of a user interface). In contrast, the runtime use
of quantitative verification also supports fine-grained adaptation of system parameters, e.g., by
continually adjusting the amount of CPU allocated to the services of a software system [5].

The runtime verification community proposes that program execution traces obtained through
monitoring are analysed at runtime, to establish in real time whether the software satisfies or
violates given correctness requirements. These corectness requirements are expressed using for-
malisms that include temporal logics [25, 27], state machines [2], regular expressions [1], rule
systems [3] and action-based contract languages [23]. Our approach is different and comple-
mentary, since it focuses on quantitative verification and continuous monitoring of environment
phenomena. Another related research area is dynamic software composition, which provides ap-
proaches (for example, based on AI planning techniques [28]) that can support adaptive reactions
triggered by requirements violations.

5 Research Opportunities

Adaptive software systems are increasingly built in practice. There has been much activity in the
area in recent years, and a number of contributions that go beyond ad-hoc practices have already
been produced. Despite these advances, much remains to be done to support the development
of predictable adaptive software via a formal, systematic and disciplined approach. Hereafter we
elaborate on the main research areas in which significant work is required to better integrate
formal verification techniques into software adaptation. The list is not exhaustive, but reflects
the key challenges encountered and foreseen in our work and that of the research communities
mentioned in the previous section.

A first area of research is discovery and model learning. We expect future software systems to
operate in environments populated by active devices and appliances that will offer services. These
environments will be highly dynamic. For example, the context may change due to movement in
space. As another example, new services may be deployed and dynamically discovered. These
services (and the components providing them) may not know each other, but they might still
try to understand what each can do and possibly cooperate to achieve common goals. How can
this be realised? How can a component learn what another component offers, given different
levels of visibility into the internals of components? For example, how far can we go in the
case of black-box visibility, when only observations of the external behavior of a component are
available? Our preliminary work in this area aims to infer the functional behavior of a (stateful)
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component from observations of inputs and outputs at the level of its API [16]. Our method
applies suitable learning strategies, and is largely based on an assumption of regularity in the
behaviour of components. It has been tested successfully in the case of Java data abstractions
[17], but more needs to be done to make the approach general and practical.

A second area of research concerns the effective integration of formal verification and self-
adaptation. The goal is to develop a repertoire of techniques that can provide a timely and
effective reaction to detected violations of the requirements. The strategies to follow are in fact
very much domain and application dependent. For example, the techniques for speeding up
runtime quantitative verification presented in Section 3 are justified whenever the time taken
by the traditional variant of the technique is incompatible with the time needed for reaction. A
catalogue of possible reaction strategies should in turn be available at runtime. An interesting
approach would be to handle adaptation within the model-driven framework. Since models are
“kept alive” at runtime, once the need for adaptive reactions is identified, it would be useful
to perform self-adaptation at the model level, and then to re-play model-driven development
to derive an implementation through a chain of automatic transformations. If changes can be
anticipated at design time, they may be reified as variation points in the models, and variations
would then be generated dynamically to achieve adaptation. In the more difficult case of unan-
ticipated changes, it might still be possible to devise a number of possible adaptation strategies
and tactics that can be attempted at runtime.

Yet another key research area involves addressing the problems that arise from new execution
platforms, such as cloud computing. So far we assumed that changes originate either in the
requirements or in the domain assumptions. But with the advent of cloud computing, the
infrastructure on which our machine works may also change. To exploit the full potential of
the service paradigm, we must complement the traditional service-oriented architecture view of
software-as-a-service with a perception of the platform and infrastructure on which the software
is run as services too. The use of a single abstraction to reason about both the machine and
the infrastructure may pave the ground to “holistic” solutions. Self-adaption cannot be seen
only at application level, but we must deploy probes, conceive analysis techniques, and identify
solutions able to drive self-adaption of the system as a whole. Adaptations at application level
must consider the implications on the lower levels; conversely, these levels should provide the
means enabling the application to execute effectively. Adaptation becomes much more of an
inter-level problem than a set of isolated intra-level solutions.

Moreover, the adoption of cloud infrastructures will also impose a shift from client-side “pro-
prietary” computing resources to “shared” ones. Web services made us think of the distributed
ownership of our applications; the cloud will make us think of the distributed ownership of our
infrastructure. To some extent, this is already the case when we build software applications us-
ing services run and shared by others. Yet, clouds will exacerbate the problem significantly. The
execution of one application will compete with the execution of another, turning self-verification
and self-adaption into infrastructure-wide requirements.

6 Conclusion

We discussed the potential and challenges associated with the runtime use of techniques such
as quantitative verification and model checking as a way to obtain dependable self-adaptive
software. Our experience with using quantitative verification at runtime on a range of projects
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shows that this technique can support software adaptation in several ways. First, it can be used
to identify and, sometimes, to predict requirement violations. Second, it supports the rigorous
planning of the reconfiguration steps that self-adaptive software employs to recover from such
requirement violations. Last but not least, it can provide irrefutable proofs that the selected
reconfiguration steps are correct. The result is software that supports not only automated
changes, but also their continual formal analysis, to verify that the software is guaranteed to
meet its requirements as it evolves.
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